纤维素基超交联吸附树脂的制备及其对苯酚吸附机理的探究

王怡钰, 梁景冬, 张云蔚, 谭瑾瑜, 胡清丽, 张岩. 纤维素基超交联吸附树脂的制备及其对苯酚吸附机理的探究[J]. 矿产综合利用, 2025, 46(3): 73-81. doi: 10.12476/kczhly.202410310285
引用本文: 王怡钰, 梁景冬, 张云蔚, 谭瑾瑜, 胡清丽, 张岩. 纤维素基超交联吸附树脂的制备及其对苯酚吸附机理的探究[J]. 矿产综合利用, 2025, 46(3): 73-81. doi: 10.12476/kczhly.202410310285
WANG Yiyu, LIANG Jingdong, ZHANG Yunwei, TAN Jinyu, HU Qingli, ZHANG Yan. Synthesis of a Cellulose-based Highly Cross-linked Adsorption Resin and its Mechanism for Phenol Adsorption[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 73-81. doi: 10.12476/kczhly.202410310285
Citation: WANG Yiyu, LIANG Jingdong, ZHANG Yunwei, TAN Jinyu, HU Qingli, ZHANG Yan. Synthesis of a Cellulose-based Highly Cross-linked Adsorption Resin and its Mechanism for Phenol Adsorption[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 73-81. doi: 10.12476/kczhly.202410310285

纤维素基超交联吸附树脂的制备及其对苯酚吸附机理的探究

  • 基金项目: 陕西省科技厅面上项目(2023-JC-YB-143);陕西省榆林市科技计划项目(CXY-2021-101-03);2024年大学生创新训练项目(202411395025);2024年研究生创新基金项目(2024YLYCX22)
详细信息
    作者简介: 王怡钰(2000-),男,硕士研究生,主要从事环境介质中有机污染物的污染特征与环境材料制备应用研究
    通讯作者: 张岩(1982-),女,副教授, 硕士生导师,主要从事绿色复合高分子材料的制备及其在环境修复领域的研究。
  • 中图分类号: O636; X703

Synthesis of a Cellulose-based Highly Cross-linked Adsorption Resin and its Mechanism for Phenol Adsorption

More Information
  • 以纤维素、苯乙烯为原料,采用接枝聚合-外交联两步法制备纤维素接枝苯乙烯超交联聚合物吸附树脂(CGS-HCP)。通过BET、XPS、FTIR、SEM等表征手段对材料制备前后的孔隙结构和表面化学性质进行分析。此外,考查了CGS-HCP对苯酚的吸附性能。结果表明,制备的CGS-HCP具有丰富的微孔和介孔,平均孔径达到3.38 nm,比表面积可达525.06 m2/g。相较纤维素原粉CGS-HCP引入大量苯环基与含氧官能团,进一步增强CGS-HCP对苯酚的吸附作用。对苯酚吸附实验进行动力学与热力学分析,表明吸附过程是自发、放热并且熵减的过程。Langmuir等温吸附线拟合CGS-HCP对苯酚最大吸附量达到29.438 mg/g,证明CGS-HCP对苯酚具有良好的去除效果,树脂内部的大量中微孔结构及树脂表面的极性基团是吸附强的主要原因。

  • 加载中
  • 图 1  CGS-HCP制备流程

    Figure 1. 

    图 2  (a)N2吸附-解吸等温线 (b) BJH介孔孔径分布 (c) HK微孔孔径分布

    Figure 2. 

    图 3  纤维素、CGS、CGS-HCP红外谱

    Figure 3. 

    图 4  XPS能谱(a)总谱(b)纤维素中碳元素能谱(c)CGS中碳元素能谱(d)CGS-HCP中碳元素能谱

    Figure 4. 

    图 5  样品SEM: (a)纤维素 (b)CGS (c) 和(d)CGS-HCP

    Figure 5. 

    图 6  温度与初始浓度对苯酚的去除率与吸附量的影响

    Figure 6. 

    图 7  等温线模型(a)Langmuir模型(b)Freundlich模型

    Figure 7. 

    图 8  吸附时间对苯酚的去除率与吸附量的影响

    Figure 8. 

    图 9  动力学模型(a)准一级动力学模型(b)准二级动力学模型(c)颗粒内扩散模型

    Figure 9. 

    图 10  CGS-HCP去除苯酚的lnKc和1/T线性拟合

    Figure 10. 

    表 1  CGS-HCP的BET分析

    Table 1.  BET analysis of the CGS-HCP

    材料 SBET
    (m2/g)
    Dave
    (nm)
    Smicro
    (m2/g)
    Vtotal
    (cm3/g)
    Vmirco
    (cm3/g)
    CGS-HCP 525.06 3.38 299.26 0.44 0.16
    下载: 导出CSV

    表 2  CGS-HCP去除苯酚的Langmuir和Freundlich等温线参数

    Table 2.  Langmuir and Freundlich isotherm parameters for phenol removal by CGS-HCP

    T/ ℃Langmuir 模型Freundlich 模型
    qmax /(mg/g)KL/ (L/mg)R2nKF/(mg1-nLn/g)R2
    2529.440.050.991.542.110.99
    下载: 导出CSV

    表 3  PFO和PSO动力学模型拟合参数

    Table 3.  PFO and PSO kinetic model fitting parameters

    pseudo first-order 模型pseudo second-order 模型
    q1ec/(mg/g)K1/ min-1R2q2ec/ (mg/g)K2/min-1R2
    1.110.040.9410.390.110.99
    下载: 导出CSV

    表 4  IPD动力学模型拟合参数

    Table 4.  IPD kinetic model fit parameters

    Kt1/min-1C1R12Kt2/min-1C2R22
    0.349.480.990.0810.550.99
    下载: 导出CSV

    表 5  CGS-HCP去除苯酚的热力学参数

    Table 5.  Thermodynamic parameters for phenol removal by CGS-HCP

    T/KΔG0/(kJ/mol)ΔH0/(kJ/mol)ΔS0/(J/(mol·K))
    298-0.42-41.58-137.45
    3080.31
    3182.28
    下载: 导出CSV
  • [1]

    王特,杨鹏辉,屈撑囤,等. 高含酚废水处理技术的研究进展[J]. 化工技术与开发, 2024, 53(Z1):92-98WANG T, YANG P H, CHU C T, et al. Research progress of high phenol containing wastewater treatment technology[J]. Chemical Technology and Development, 2024, 53(Z1):92-98. doi: 10.3969/j.issn.1671-9905.2024.01.018

    WANG T, YANG P H, CHU C T, et al. Research progress of high phenol containing wastewater treatment technology[J]. Chemical Technology and Development, 2024, 53(Z1):92-98. doi: 10.3969/j.issn.1671-9905.2024.01.018

    [2]

    刘佳琦.含酚废水处理技术研究[J].环境科学与管理,2018,43(9):111- 114.LIU J Q. Research on phenol-containing wastewater treatment technology[J]. Environmental Sciences and Management, 2018,43(9):111- 114.

    LIU J Q. Research on phenol-containing wastewater treatment technology[J]. Environmental Sciences and Management, 2018,43(9):111- 114.

    [3]

    强喆林,王玲,吴迪,等. 含酚废水处理技术研究进展[J]. 当代化工, 2021, 50(9):2206-2210.QIANG Z L, WANG L, WU D, et al. Research progress of phenol wastewater treatment technology[J]. Contemporary Chemical Industry, 2021, 50(9):2206-2210. doi: 10.3969/j.issn.1671-0460.2021.09.042

    QIANG Z L, WANG L, WU D, et al. Research progress of phenol wastewater treatment technology[J]. Contemporary Chemical Industry, 2021, 50(9):2206-2210. doi: 10.3969/j.issn.1671-0460.2021.09.042

    [4]

    Zango Z U, Sambudi N S, Jumbri K, et al. An overview and evaluation of highly porous adsorbent materials for polycyclic aromatic hydrocarbons and phenols removal from wastewater[J]. Water, 2020, 12(10):2921. doi: 10.3390/w12102921

    [5]

    Cifuentes-Cabezas M, Carbonell-Alcaina C, Vincent-Vela M C, et al. Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater[J]. Process Safety and Environmental Protection, 2021, 149:724-734. doi: 10.1016/j.psep.2021.03.035

    [6]

    Mohamed A, Yousef S, Nasser W S, et al. Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV[J]. Environmental Sciences Europe, 2020, 32:1-8. doi: 10.1186/s12302-019-0282-1

    [7]

    Panigrahy N, Priyadarshini A, Sahoo M M, et al. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook[J]. Environmental Technology & Innovation, 2022, 27:102423.

    [8]

    Franco D S, Georgin J, Netto M S, et al. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105927. doi: 10.1016/j.jece.2021.105927

    [9]

    潘昱晨, 杨鹏辉, 屈撑囤, 等. 高含酚废水的资源化处理技术研究进展[J]. 石油化工应用, 2024, 43(8):1-7.PAN Y C, YANG P H,CHU C T, et al. Research progress on resource treatment technology of high phenol-containing wastewater[J]. Petrochemical application, 2024, 43(8):1-7. doi: 10.3969/j.issn.1673-5285.2024.08.001

    PAN Y C, YANG P H,CHU C T, et al. Research progress on resource treatment technology of high phenol-containing wastewater[J]. Petrochemical application, 2024, 43(8):1-7. doi: 10.3969/j.issn.1673-5285.2024.08.001

    [10]

    孙晓宇,邵红. 膨润土吸附处理含酚废水的改性方法及吸附规律研究进展[J]. 环境保护与循环经济, 2016, 36(2):33-37+68.SUN X Y, SHAO H. Research progress on modification method and adsorption law of bentonite adsorption treatment of phenol-containing wastewater[J]. Environmental protection and circular economy, 2016, 36(2):33-37+68. doi: 10.3969/j.issn.1674-1021.2016.02.011

    SUN X Y, SHAO H. Research progress on modification method and adsorption law of bentonite adsorption treatment of phenol-containing wastewater[J]. Environmental protection and circular economy, 2016, 36(2):33-37+68. doi: 10.3969/j.issn.1674-1021.2016.02.011

    [11]

    Tri N L M, Thang P Q, Van Tan L, et al. Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite[J]. Journal of Water Process Engineering, 2020, 33:101070. doi: 10.1016/j.jwpe.2019.101070

    [12]

    De Farias M B, Prediger P, Vieira M G A. Conventional and green-synthesized nanomaterials applied for the adsorption and/or degradation of phenol: A recent overview[J]. Journal of Cleaner Production, 2022, 367:132980. doi: 10.1016/j.jclepro.2022.132980

    [13]

    张健, 颜进华, 杨焕磊, 等. 纤维颗粒填料的改性及其应用研究[J]. 纸和造纸, 2024, 43(2):1-4.ZHANG J, YAN J H, YANG H L, et al. Modification and application of fiber particle filler[J]. Paper and Papermaking, 2024, 43(2):1-4.

    ZHANG J, YAN J H, YANG H L, et al. Modification and application of fiber particle filler[J]. Paper and Papermaking, 2024, 43(2):1-4.

    [14]

    Karamipour A, Parsi P K, Zahedi P, et al. Using Fe3O4-coated nanofibers based on cellulose acetate/chitosan for adsorption of Cr (VI), Ni (II) and phenol from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 154:1132-1139. doi: 10.1016/j.ijbiomac.2019.11.058

    [15]

    GUO M, WANG J, ZHANG C, et al. Cellulose-based thermosensitive supramolecular hydrogel for phenol removal from polluted water[J]. Environmental Research, 2022, 214:113863. doi: 10.1016/j.envres.2022.113863

    [16]

    臧金秋,杨传玺,王小宁,等.生物炭吸附水中污染物的性能、机理和环境风险[J].工业水处理,2023,43(12):1- 13. ZANG J Q,YANG C X,WANG X N, et al. Performance, mechanism and environmental risks of biochar adsorption of pollutants in water[J]. Industrial Water Treatment, 2023,43(12):1-13.

    [17]

    QIAO L, LI S, LI Y, et al. Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions[J]. Journal of Cleaner Production, 2020, 253:120017. doi: 10.1016/j.jclepro.2020.120017

    [18]

    LIU Y, LI L, DUAN Z, et al. Chitosan modified nitrogen-doped porous carbon composite as a highly-efficient adsorbent for phenolic pollutants removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610:125728. doi: 10.1016/j.colsurfa.2020.125728

    [19]

    陈宁, 王晓东, 吴宇行. 活性污泥模型变量与参数的律定及改进应用研究[J]. 给水排水, 2022, 58(S2):230-240.CHEN N, WANG X D, WU Y H. Study on the law of variables and parameters of activated sludge model and its improved application[J]. Water Supply and Drainage, 2022, 58(S2):230-240.

    CHEN N, WANG X D, WU Y H. Study on the law of variables and parameters of activated sludge model and its improved application[J]. Water Supply and Drainage, 2022, 58(S2):230-240.

    [20]

    Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9):1361-1403. doi: 10.1021/ja02242a004

    [21]

    Freundlich H. Über die adsorption in lösungen[J]. Zeitschrift für physikalische Chemie, 1907, 57(1):385-470.

    [22]

    Mamchenko A V. Model of intradiffusional kinetics of adsorption on active carbons[J]. Theoretical and Experimental Chemistry, 1986, 22(1):70-74. doi: 10.1007/BF00525309

    [23]

    Deng Y, Wang X, Lynch I, et al. Homogeneous dispersion of amorphous nanoscale zero-valent iron supported on chlorella-derived biochar: In-situ synthesis and application mechanism for Cr (VI) removal over a wide pH range[J]. Separation and Purification Technology, 2024, 330:125207. doi: 10.1016/j.seppur.2023.125207

    [24]

    Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24:1-39.

    [25]

    HO Y S, MCKAY G, Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34:451-465.

    [26]

    Liang L, Guo Y, Wang H, et al. Study on plasma‐modified corn stover‐humic acid‐based superabsorbent resin[J]. Journal of Applied Polymer Science, 2023, 140(5):e53390. doi: 10.1002/app.53390

    [27]

    王伟涛,陈香李,杨百勤. 固体在液相中吸附热力学参数计算介绍[J]. 大学化学, 2021, 36(2):233-240WANG W T,CHEN X L,YANG B Q. Introduction to the calculation of thermodynamic parameters of adsorption of solids in the liquid phase[J]. University Chemistry, 2021, 36(2):233-240.

    WANG W T,CHEN X L,YANG B Q. Introduction to the calculation of thermodynamic parameters of adsorption of solids in the liquid phase[J]. University Chemistry, 2021, 36(2):233-240.

  • 加载中

(10)

(5)

计量
  • 文章访问数:  52
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2024-10-31
刊出日期:  2025-06-25

目录