Experimental Study on Flotation of Low-grade High-iron Bauxite in Western Guangxi
-
摘要:
桂西某地铝土矿Al2O3品位为44.40%,SiO2 品位为14.51%,铝硅比仅为3.06,且矿石中含Fe2O3 22.43%,为高铁低品位铝土矿;矿石主要含铝矿物为一水硬铝石,主要含铁矿物为褐铁矿和赤铁矿。针对该矿Al2O3品位及铝硅比低,Fe2O3品位高的特点,采用六偏磷酸钠和碳酸钠组合抑制,同时使用自主研发的捕收剂 EM505,可有效地改善浮选效果。浮选闭路实验获得了铝硅比为6.23,Al2O3回收率为78.12%的铝精矿。实验在关键技术方面取得突破,为该难选高铁铝土矿资源的开发利用提供一种新的方法。
Abstract:There is a high-iron-containing low-grade bauxite ore in West of Guangxi Province, with Al2O3 content of 44.40%, SiO2 4.51%, alumina-silica ratio only 3.06, and Fe2O3 22.43%. The main aluminum minerals in the ore are diaspore, and the main iron minerals are limonite and hematite. A view of the characteristics of low Al2O3 content, Al-Si ratio and high Fe2O3 content of the ore, the flotation results can be improved effectively by using of the combined depressants of sodium hexametaphosphates and sodium carbonate inhibition, as well as self-developed collector EM505 collecting agent. Aluminum concentrate with A/S ratio of 6.23 and Al2O3 recovery of 78.12% was obtained by the flotation closed-circuit test. This experiment has made breakthroughs in key technologies, providing a new method for the development and utilization of this difficult flotation of high-iron bauxite resource.
-
Key words:
- mining processing engineering /
- high-iron bauxite /
- flotation /
- collectors EM505 /
- desiliconization
-
-
表 1 原矿化学多元素分析结果 单位:%
Table 1. Analysis results of major chemical composition of the raw ore
Al2O3 SiO2 Fe2O3 TiO2 CaO MgO P2O5 S C REO* A/S 44.4 14.5 22.4 4.76 0.30 0.52 0.04 0.06 0.33 742 3.06 注:*单位为g/t。 表 2 铝土矿的矿物组成及含量
Table 2. Mineral composition and content of bauxite
矿物名称 含量/% 矿物名称 含量/% 铝矿物 39.44 辉石、橄榄石 1.28 铁铝硅类*及绿泥石 33.96 钛铁矿 0.17 褐铁矿、赤铁矿 12.14 方解石 0.04 高岭石 8.52 黄铁矿 0.04 伊利石、叶蜡石 1.57 天青石 0.26 锐钛矿、金红石 0.85 磷灰石 0.02 石英 0.24 铁屑、稀土矿物及其他 1.24 长石 0.23 合计 100.00 表 3 磨矿细度实验结果
Table 3. Results of grinding fineness
磨矿细度-0.074 mm
含量/%产品名称 产率/% 品位/% 回收率/% A/S Al2O3 SiO2 Fe2O3 Al2O3 SiO2 Fe2O3 65.42 铝精矿 64.81 52.09 10.05 20.18 75.68 45.10 56.66 5.18 中矿1 5.41 31.18 20.88 29.69 3.78 7.82 6.96 1.49 中矿2 9.21 31.17 22.84 27.90 6.43 14.57 11.13 1.36 中矿3 4.20 32.57 19.79 30.33 3.07 5.76 5.52 1.65 尾 矿 16.37 30.08 23.60 27.82 11.04 26.75 19.73 1.27 原 矿 100.00 44.61 14.44 23.08 100.00 100.00 100.00 3.09 74.77 铝精矿 65.33 51.95 10.26 19.72 76.36 46.58 56.15 5.06 中矿1 8.90 31.34 18.80 31.46 6.28 11.63 12.21 1.67 中矿2 7.83 29.87 22.99 28.64 5.26 12.50 9.77 1.30 中矿3 2.55 31.46 20.15 29.51 1.81 3.57 3.28 1.56 尾 矿 15.39 29.73 24.05 27.72 10.29 25.72 18.59 1.24 原 矿 100.00 44.45 14.39 22.94 100.00 100.00 100.00 3.09 83.52 铝精矿 67.07 50.97 10.41 19.89 77.10 49.23 58.46 4.90 中矿1 8.60 32.38 18.89 30.57 6.28 11.45 11.52 1.71 中矿2 7.62 30.44 22.61 28.85 5.23 12.16 9.64 1.35 中矿3 3.21 31.59 20.04 30.12 2.29 4.53 4.23 1.58 尾 矿 13.50 29.90 23.78 27.31 9.10 22.63 16.15 1.26 原 矿 100.00 44.34 14.18 22.82 100.00 100.00 100.00 3.13 89.65 铝精矿 69.21 50.52 10.51 20.72 78.95 51.42 62.37 4.81 中矿1 8.98 31.14 19.50 30.08 6.31 12.38 11.75 1.60 中矿2 7.14 30.10 22.76 28.07 4.85 11.48 8.71 1.32 中矿3 2.85 30.95 20.82 30.63 1.99 4.19 3.79 1.49 尾 矿 11.82 29.59 24.56 26.01 7.90 20.53 13.38 1.20 原 矿 100.00 44.29 14.15 22.99 100.00 100.00 100.00 3.13 92.01 铝精矿 68.78 50.48 10.53 20.51 78.45 50.94 61.82 4.79 中矿1 8.90 31.33 19.92 29.54 6.30 12.46 11.52 1.57 中矿2 7.72 30.37 22.79 27.58 5.30 12.38 9.33 1.33 中矿3 2.79 31.12 20.45 30.17 1.96 4.01 3.69 1.52 尾 矿 11.81 29.93 24.32 26.35 7.99 20.21 13.64 1.23 原 矿 100.00 44.26 14.22 22.82 100.00 100.00 100.00 3.11 表 4 正浮选开路流程实验结果
Table 4. Results of open-circuit process of bauxite positive flotation
产品名称 产率/% 品位/% 回收率/% A/S Al2O3 SiO2 Fe2O3 Al2O3 SiO2 Fe2O3 铝精矿 58.57 55.75 8.17 18.09 73.40 33.49 47.27 6.82 中矿3 5.67 31.26 17.36 32.08 3.98 6.89 8.11 1.80 中矿2 5.23 29.95 21.59 28.47 3.52 7.90 6.64 1.39 中矿1 9.15 27.69 23.80 26.41 5.70 15.24 10.78 1.16 扫精矿 4.53 30.40 23.47 27.54 3.10 7.44 5.57 1.30 尾矿 16.85 27.21 24.63 28.77 10.31 29.04 21.63 1.10 原矿 100.00 44.49 14.29 22.42 100.00 100.00 100.00 3.11 表 5 铝土矿正浮选闭路流程实验结果
Table 5. Results of closed-circuit process of bauxite positive flotation
产品名称 产率
/%品位/% 回收率/% A/S Al2O3 SiO2 Fe2O3 Al2O3 SiO2 Fe2O3 铝精矿 64.63 53.73 8.62 18.73 78.12 39.06 52.72 6.23 尾矿 35.37 27.49 24.57 30.69 21.88 60.94 47.28 1.12 原矿 100.00 44.45 14.26 22.96 100.00 100.00 100.00 3.12 -
[1] 李春焕, 吕会会 , 廖志华, 等. 我国铝土矿资源需求可持续保障措施分析[J]. 矿产综合利用, 2024, 45(5):119-122.LI C H, LYU H H, LIAO Z H, et al. Analysis of sustainable guarantee measures of bauxite resource demand in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):119-122.
LI C H, LYU H H, LIAO Z H, et al. Analysis of sustainable guarantee measures of bauxite resource demand in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):119-122.
[2] 许斌,李帅军. 高铁铝土矿铝铁分离研究现状[J]. 矿业工程, 2014, 12(2):17-20.XU B, LI S J. Research status of separation of aluminum and iron from high-ferric bauxite[J]. Mining Engineering, 2014, 12(2):17-20.
XU B, LI S J. Research status of separation of aluminum and iron from high-ferric bauxite[J]. Mining Engineering, 2014, 12(2):17-20.
[3] 刘得辉, 王永志, 梁标志, 等. 基于多指标的广西铝土矿储备矿产地开采优势评价[J]. 矿产综合利用, 2023, 44(5):174-184.LIU D H, WANG Y Z, LIANG B Z, et al. Evaluation of mining advantages of Guangxi bauxite reserves based on multiple indicators[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5):174-184. doi: 10.3969/j.issn.1000-6532.2023.05.029
LIU D H, WANG Y Z, LIANG B Z, et al. Evaluation of mining advantages of Guangxi bauxite reserves based on multiple indicators[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5):174-184. doi: 10.3969/j.issn.1000-6532.2023.05.029
[4] 陈燕清. 广西某高硫高铁铝土矿拜耳法溶出实验研究[J]. 矿产综合利用, 2019, 40(2):46-50.CHEN Y Q. Investigation on the bayer dissolving method for high-sulfur and iron bauxite in Guangxi[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(2):46-50.
CHEN Y Q. Investigation on the bayer dissolving method for high-sulfur and iron bauxite in Guangxi[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(2):46-50.
[5] 韩跃新,柳晓,何发钰,等. 我国铝土矿资源及其选矿技术进展[J]. 矿产保护与利用, 2019, 39(4):151-158.HAN Y X, LIU X, HE F Y, et al. Current situation of bauxite resource and its beneficiation technology in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4):151-158.
HAN Y X, LIU X, HE F Y, et al. Current situation of bauxite resource and its beneficiation technology in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4):151-158.
[6] 霍强,刘晰,谢建平,等. 低品位高铁铝土矿浮选脱硅试验研究[J]. 矿冶工程, 2018, 38(6):51-54.HUO Q, LIU X, XIE J P, et al. Desilication of low-grade high-iron bauxite by flotation[J]. Mining and Metallurgical Engineering, 2018, 38(6):51-54.
HUO Q, LIU X, XIE J P, et al. Desilication of low-grade high-iron bauxite by flotation[J]. Mining and Metallurgical Engineering, 2018, 38(6):51-54.
[7] 李正丹,王秀峰,万兵, 等. 某低品位含铁铝土矿选矿试验研究[J]. 有色金属(选矿部分), 2019(1):62-67.LI Z D, WANG X F, WAN B, et al. Beneficiation test of a low grade iron-bearing bauxite[J]. Nonferrous Metals (Mineral Processing Section), 2019(1):62-67.
LI Z D, WANG X F, WAN B, et al. Beneficiation test of a low grade iron-bearing bauxite[J]. Nonferrous Metals (Mineral Processing Section), 2019(1):62-67.
[8] 郭鑫,田应忠,任朋. 西南某地高铁铝土矿浮选脱硅试验研究[J]. 轻金属, 2021(9):10-13.GUO X, TIAN Y Z, REN P. Experimental study on flotation desilication of a high-iron bauxite in southwestern China[J]. Light Metals, 2021(9):10-13.
GUO X, TIAN Y Z, REN P. Experimental study on flotation desilication of a high-iron bauxite in southwestern China[J]. Light Metals, 2021(9):10-13.
[9] 马智敏, 陈兴华, 王玉才, 等. 铝土矿选矿脱硅技术研究现状及前景展望[J]. 矿产综合利用, 2015, 36(1):1-6.MA Z M, CHEN X H, WANG Y C, et al. Present situation and prospect of bauxite desiliconization technology[J]. Multipurpose Utilization of Mineral Resources, 2015, 36(1):1-6.
MA Z M, CHEN X H, WANG Y C, et al. Present situation and prospect of bauxite desiliconization technology[J]. Multipurpose Utilization of Mineral Resources, 2015, 36(1):1-6.
-