Experimental Study on Flotation of a Micro-fine Arsenopyrite-type Gold Ore in Central Asia
-
摘要:
在全球黄金需求增长、易选冶金矿资源减少的背景下,难处理金矿的开发愈发重要。中亚某金矿储量大,为低硫高砷低品位难处理金矿,Au品位1.53 g/t,金嵌布粒度微细,超60%粒径小于0.01 mm。选矿工艺对比实验结果表明,单一浮选工艺优于摇床—浮选联合工艺。浮选闭路实验采用“一次粗选—一次扫选—两次精选”短流程工艺,配合添加新型有机组合抑制剂EMY-515、新型组合捕收剂EMB-906,获得Au品位40.20 g/t、回收率76.44%的金精矿,尾矿Au含量降至0.37 g/t(生产现场尾矿Au含量0.5~0.6 g/t)。本研究为该类型金矿开发提供了可行方案,为共建“一带一路”国家金矿资源高效开发利用提供技术支撑。
Abstract:Against the backdrop of increasing global gold demand and the depletion of easily treatable gold resources, the development of refractory gold ores has become increasingly important. A gold deposit in Central Asia, characterized by large reserves, low sulfur, high arsenic, and low-grade refractory gold ore, with an Au grade of 1.53 g/t and ultra-fine gold dissemination (over 60% of particles smaller than 0.01 mm), was studied. Comparative beneficiation tests showed that the single flotation process outperformed the combined shaking table-flotation process. The closed-circuit flotation test employed a short-flow process of "one roughing, one scavenging, and two cleaning" stages, in combination with the addition of a novel organic composite depressant EMY-515 and a new composite collector EMB-906. This resulted in a gold concentrate with an Au grade of 40.20 g/t and a recovery rate of 76.44%, while the Au content in the tailings was reduced to 0.37 g/t. This study provides a feasible solution for the development of this type of gold ores and offers technical support for the efficient exploitation and utilization of gold resources in countries along the "Belt and Road" initiative.
-
-
表 1 原矿化学多元素分析结果 单位:%
Table 1. Analysis results of multi-elements in the run-of-mine ore
Au* As Cu S Pb TiO2 K2O Zn Fe Al2O3 SiO2 MgO CaO 1.53 0.31 0.15 0.87 0.26 0.32 2.19 0.011 2.92 7.36 62.19 3.77 6.46 注:*单位为g/t。 表 2 原矿矿物组成分析结果 单位:%
Table 2. Analysis results of the mineral composition of the raw ore
石英 方解石 片硅铝石 毒砂和黄铁矿 铁白云石 石膏 其他矿物 34.00 17.90 37.20 1.26 4.50 0.95 4.19 表 3 工艺流程对比实验结果
Table 3. Results of the comparative test of the process flows
工艺 产品名称 产率/% Au品
位/(g/t)Au回
收率/%摇床―浮选 重选精矿 1.01 10.51 7.27 浮选粗精矿 17.33 4.89 58.05 重选+浮选粗精矿 18.34 5.20 65.32 尾矿 81.66 0.62 34.68 原矿 100.00 1.46 100.00 浮选 浮选粗精矿 19.29 5.32 68.67 尾矿 80.71 0.58 31.33 原矿 100.00 1.49 100.00 表 4 开路实验结果
Table 4. Results of the open-circuit test
产品名称 产率 Au品位/(g/t) Au回收率/% 金精矿 1.62 44.90 47.73 中矿2 2.60 7.67 13.09 中矿1 8.63 2.93 16.59 扫选中矿 3.84 2.02 5.10 尾矿 83.31 0.32 17.49 原矿 100.00 1.52 100.00 表 5 闭路实验结果
Table 5. Results of the closed-circuit test
产品名称 产率/% Au品位/(g/t) Au回收率/% 金精矿 2.91 40.20 76.44 尾矿 97.09 0.37 23.56 原矿 100.00 1.53 100.00 表 6 金精矿多元素分析结果 单位:%
Table 6. Analysis results of multi-elements of concentrate
Au* As Cu S Pb TiO2 K2O Zn Fe Al2O3 SiO2 MgO CaO 40.3 8.42 3.30 24.14 0.21 0.19 0.54 0.19 26.07 2.43 34.02 5.11 3.80 注:*单位为g/t。 表 7 尾矿多元素分析结果 单位:%
Table 7. Analysis results of multi-elements of tailings
Au* As Cu S Pb TiO2 K2O Zn Fe Al2O3 SiO2 MgO CaO 0.36 0.055 0.053 0.125 0.015 0.35 2.22 0.009 2.23 7.51 66.00 3.67 6.61 注:*单位为g/t。 -
[1] 邱曼, 黄学雄, 毛益林, 等. 我国金矿资源概况及选冶技术研究进展[J]. 矿产综合利用, 2023, 44(2):106-115.QIU M, HUANG X X, MAO Y L, et al. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2):106-115. doi: 10.3969/j.issn.1000-6532.2023.02.019
QIU M, HUANG X X, MAO Y L, et al. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2):106-115. doi: 10.3969/j.issn.1000-6532.2023.02.019
[2] 陈艳波, 李光胜, 朱幸福, 等. 甘肃某含砷高硫金矿浮选实验[J]. 矿产综合利用, 2024, 45(3):206-210.CHEN Y B, LI G S, ZHU X F, et al. Flotation experiment on a high-sulfur and arsenic-bearing gold ore in Gansu[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3):206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032
CHEN Y B, LI G S, ZHU X F, et al. Flotation experiment on a high-sulfur and arsenic-bearing gold ore in Gansu[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3):206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032
[3] 潘彦岑, 靳建平, 李艳军, 等. 某高硫砷难处理金矿石选矿试验研究[J]. 金属矿山, 2024(1):220-225.PAN Y C, JIN J P, LI Y J, et al. Experimental study on beneficiation of a high-sulfur and arsenic-bearing refractory gold ore[J]. Metal Mine, 2024(1):220-225.
PAN Y C, JIN J P, LI Y J, et al. Experimental study on beneficiation of a high-sulfur and arsenic-bearing refractory gold ore[J]. Metal Mine, 2024(1):220-225.
[4] 吴天骄, 曹欢, 牛芳银, 等. 某含碳微细粒难处理金矿浮选提金工艺研究[J]. 黄金科学技术, 2021, 29(5):761-770.WU T J, CAO H, NIU F Y, et al. Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J]. Gold Science and Technology, 2021, 29(5):761-770.
WU T J, CAO H, NIU F Y, et al. Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J]. Gold Science and Technology, 2021, 29(5):761-770.
[5] 周光浪, 周东云. 多硫化物微细粒浸染型金矿回收金试验研究[J]. 贵金属, 2023, 44(1):47-53.ZHOU G L, ZHOU D Y. Experimental study on gold recovery from polysulfide fine-grained disseminated gold mines[J]. Precious Metals, 2023, 44(1):47-53.
ZHOU G L, ZHOU D Y. Experimental study on gold recovery from polysulfide fine-grained disseminated gold mines[J]. Precious Metals, 2023, 44(1):47-53.
[6] 明平田, 李飞. 某微细粒蚀变岩型金矿高效浮选新工艺研究[J]. 矿产综合利用, 2019(4):73-78.MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015
MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015
[7] 明平田, 马生萍, 丁超, 等. 青海某少硫化物难选金矿选矿实验研究[J/OL]. 矿产综合利用, 2024, 45(6): 161-168.MING P T, MA S P, DING C, et al. Experimental study on flotation technology for low-sulfide refractory gold ore from Qinghai[J/OL]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 161-168
MING P T, MA S P, DING C, et al. Experimental study on flotation technology for low-sulfide refractory gold ore from Qinghai[J/OL]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 161-168
[8] 朱国庆, 杜淑华, 夏亮, 等. 国外某含蛇纹石绿泥石微细粒难选金矿石选矿试验[J]. 金属矿山, 2021(5):115-119.ZHU G Q, DU S H, XIA L, et al. Experimental study on beneficiation of a fine-grained refractory gold ore containing serpentine and chlorite from abroad[J]. Metal Mine, 2021(5):115-119.
ZHU G Q, DU S H, XIA L, et al. Experimental study on beneficiation of a fine-grained refractory gold ore containing serpentine and chlorite from abroad[J]. Metal Mine, 2021(5):115-119.
[9] 张润身, 代淑娟, 胡志刚, 等. 某微细粒嵌布金矿石浮选试验研究[J]. 金属矿山, 2010(2):76-79.ZHANG R S, DAI S J, HU Z G, et al. Experimental study on flotation of a fine-grained disseminated gold ore[J]. Metal Mine, 2010(2):76-79.
ZHANG R S, DAI S J, HU Z G, et al. Experimental study on flotation of a fine-grained disseminated gold ore[J]. Metal Mine, 2010(2):76-79.
[10] LI J, TONG L, ZHANG H, et al. Pool bio-oxidation and fitting analysis of low-grade arsenic-containing refractory gold ore[J]. Green Chemical Engineering, 2024, 5(4):511-518. doi: 10.1016/j.gce.2024.01.001
[11] 朱文超. 贵州某高碳微细粒金矿选矿试验研究[J]. 湖南有色金属, 2022, 38(5):11-15.ZHU W C. Experimental study on mineral processing of a high-carbon fine-grained gold ore in Guizhou[J]. Hunan Nonferrous Metals, 2022, 38(5):11-15.
ZHU W C. Experimental study on mineral processing of a high-carbon fine-grained gold ore in Guizhou[J]. Hunan Nonferrous Metals, 2022, 38(5):11-15.
[12] 罗国清, 黄霞光, 李杨, 等. 湖南某金矿石选矿试验研究[J]. 现代矿业, 2022, 38(8):164-166.LUO G Q, HUANG X G, LI Y, et al. Experimental study on mineral processing of a gold ore in Hunan[J]. Modern Mining, 2022, 38(8):164-166.
LUO G Q, HUANG X G, LI Y, et al. Experimental study on mineral processing of a gold ore in Hunan[J]. Modern Mining, 2022, 38(8):164-166.
[13] 杨林, 李晓阳, 简胜. 国外某毒砂型金矿提取预富集工艺技术研究[J]. 贵金属, 2015, 36(S1):174-177.YANG L, LI X Y, JIAN S. The extraction enrichment study of a foreign gold ore which exist in arsenopyrite[J]. Precious Metals, 2015, 36(S1):174-177.
YANG L, LI X Y, JIAN S. The extraction enrichment study of a foreign gold ore which exist in arsenopyrite[J]. Precious Metals, 2015, 36(S1):174-177.
[14] 王垚波. 塔吉克斯坦某金矿矿床地质特征及成因分析[J]. 世界有色金属, 2022(23):85-87.WANG Y B. Geological characteristics and genesis analysis of a gold deposit in Tajikistan[J]. World Nonferrous Metals, 2022(23):85-87.
WANG Y B. Geological characteristics and genesis analysis of a gold deposit in Tajikistan[J]. World Nonferrous Metals, 2022(23):85-87.
[15] 詹承淮. 塔吉克斯坦某金矿地质构造特征及成矿规律浅析[J]. 西部资源, 2018(1):39-40.ZHAN C H. Analysis of geological structure characteristics and metallogenic regularity of a gold mine in Tajikistan[J]. Western Resources, 2018(1):39-40.
ZHAN C H. Analysis of geological structure characteristics and metallogenic regularity of a gold mine in Tajikistan[J]. Western Resources, 2018(1):39-40.
[16] 王勇义. 塔吉克斯坦某矿区金矿床的地质特征及矿床成因[J]. 世界有色金属, 2019(3):93-94.WANG Y Y. Geological characteristics and genesis of a gold deposit in a mining area of Tajikistan[J]. World Nonferrous Metals, 2019(3):93-94. doi: 10.3969/j.issn.1002-5065.2019.03.054
WANG Y Y. Geological characteristics and genesis of a gold deposit in a mining area of Tajikistan[J]. World Nonferrous Metals, 2019(3):93-94. doi: 10.3969/j.issn.1002-5065.2019.03.054
[17] NIE Y, CHEN J, WANG Q, et al. Use of dry grinding process to increase the leaching of gold from a roasted concentrate containing hematite in the thiosulfate system[J]. Hydrometallurgy, 2021, 201(4):105582.
[18] 明平田, 李飞, 陈自强, 等. 青海某低品位难选金矿扫选精矿再磨再选实践及应用[J]. 矿产综合利用, 2024, 45(5):15-23.MING P T, LI F, CHEN Z Q, et al. Practice and application of regrinding and re-election of swept concentrate from a low-grade difficult gold ore in qinghai province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):15-23.
MING P T, LI F, CHEN Z Q, et al. Practice and application of regrinding and re-election of swept concentrate from a low-grade difficult gold ore in qinghai province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):15-23.
[19] 蔡明明, 张文平, 徐超, 等. 某难选金矿物工艺矿物学研 究[J]. 矿产综合利用, 2022(5):193-198.CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198.
CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198.
[20] 刘惠中, 彭志龙. 选矿摇床的研究现状及发展趋势[J]. 有色金属(选矿部分), 2023(5):120-126.LIU H Z, PENG Z L. Research status and development trend of mineral processing shaking tables[J]. Nonferrous Metals(Mineral Processing Section), 2023(5):120-126.
LIU H Z, PENG Z L. Research status and development trend of mineral processing shaking tables[J]. Nonferrous Metals(Mineral Processing Section), 2023(5):120-126.
[21] 冯博, 柯珍, 阳栩生. 微细粒矿物浮选研究进展:机理、技术、设备及检测方法[J]. 有色金属(选矿部分), 2024(12):1-18.FENG B, KE Z, YANG X S. Research progress of flotation of fine-grained minerals: mechanism, technology, equipment and detection methods[J]. Nonferrous Metals(Mineral Processing Section), 2024(12):1-18.
FENG B, KE Z, YANG X S. Research progress of flotation of fine-grained minerals: mechanism, technology, equipment and detection methods[J]. Nonferrous Metals(Mineral Processing Section), 2024(12):1-18.
[22] 谢贤, 童雄.一种回收含锑金矿浮选尾矿中金及微细粒锑矿物的方法:201610911218.1[P].2018-12-14.XIE X, TONG X. A method for recovering gold and microfine-grained antimony minerals in antimony-containing gold ore flotation tailings:201610911218.1[P].2018-12-14.
XIE X, TONG X. A method for recovering gold and microfine-grained antimony minerals in antimony-containing gold ore flotation tailings:201610911218.1[P].2018-12-14.
[23] 李正要,林蜀勇,王金虎,等.一种从生物预氧化-炭浆法提金尾渣中浮选回收金的方法: 201410757187.X[P].2015-10-07.LI Z Y, LIN S Y, WANG J H, et al. A method of gold recovery by flotation from gold extraction tailings of biological pre-oxidation-carbon slurry method: 201410757187.X[P].2015-10-07.
LI Z Y, LIN S Y, WANG J H, et al. A method of gold recovery by flotation from gold extraction tailings of biological pre-oxidation-carbon slurry method: 201410757187.X[P].2015-10-07.
-