中亚某微细粒毒砂型金矿浮选实验

张文谱, 王晓慧, 吴威龙, 黄坤晰, 赵开乐, 王振. 中亚某微细粒毒砂型金矿浮选实验[J]. 矿产综合利用, 2025, 46(4): 100-108. doi: 10.12476/kczhly.202505070074
引用本文: 张文谱, 王晓慧, 吴威龙, 黄坤晰, 赵开乐, 王振. 中亚某微细粒毒砂型金矿浮选实验[J]. 矿产综合利用, 2025, 46(4): 100-108. doi: 10.12476/kczhly.202505070074
ZHANG Wenpu, WANG Xiaohui, WU Weilong, HUANG Kunxi, ZHAO Kaile, WANG Zhen. Experimental Study on Flotation of a Micro-fine Arsenopyrite-type Gold Ore in Central Asia[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 100-108. doi: 10.12476/kczhly.202505070074
Citation: ZHANG Wenpu, WANG Xiaohui, WU Weilong, HUANG Kunxi, ZHAO Kaile, WANG Zhen. Experimental Study on Flotation of a Micro-fine Arsenopyrite-type Gold Ore in Central Asia[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 100-108. doi: 10.12476/kczhly.202505070074

中亚某微细粒毒砂型金矿浮选实验

  • 基金项目: 国家重点研发计划国际合作项目“复杂微细粒毒砂型金矿高效提质降杂关键技术研究”(2023YFE0104100);四川省科技计划项目(2024YFHZ0243)
详细信息
    作者简介: 张文谱(1993-),男,硕士,工程师,研究方向为多金属矿产资源综合利用
    通讯作者: 王晓慧(1985-),女,硕士,高级工程师,研究方向为多金属矿产资源综合利用
  • 中图分类号: TD952

Experimental Study on Flotation of a Micro-fine Arsenopyrite-type Gold Ore in Central Asia

More Information
  • 在全球黄金需求增长、易选冶金矿资源减少的背景下,难处理金矿的开发愈发重要。中亚某金矿储量大,为低硫高砷低品位难处理金矿,Au品位1.53 g/t,金嵌布粒度微细,超60%粒径小于0.01 mm。选矿工艺对比实验结果表明,单一浮选工艺优于摇床—浮选联合工艺。浮选闭路实验采用“一次粗选—一次扫选—两次精选”短流程工艺,配合添加新型有机组合抑制剂EMY-515、新型组合捕收剂EMB-906,获得Au品位40.20 g/t、回收率76.44%的金精矿,尾矿Au含量降至0.37 g/t(生产现场尾矿Au含量0.5~0.6 g/t)。本研究为该类型金矿开发提供了可行方案,为共建“一带一路”国家金矿资源高效开发利用提供技术支撑。

  • 加载中
  • 图 1  摇床―浮选探索实验流程

    Figure 1. 

    图 2  磨矿细度实验结果

    Figure 2. 

    图 3  pH值调整剂比选实验结果

    Figure 3. 

    图 4  碳酸钠用量实验结果

    Figure 4. 

    图 5  硫酸铜用量实验结果

    Figure 5. 

    图 6  抑制剂比选实验结果

    Figure 6. 

    图 7  抑制剂用量实验结果

    Figure 7. 

    图 8  戊基黄药用量实验结果

    Figure 8. 

    图 9  EMB-906用量实验结果

    Figure 9. 

    图 10  开路实验流程

    Figure 10. 

    图 11  闭路实验流程

    Figure 11. 

    图 12  金精矿扫描电子显微镜背散射

    Figure 12. 

    表 1  原矿化学多元素分析结果 单位:%

    Table 1.  Analysis results of multi-elements in the run-of-mine ore

    Au*AsCuSPbTiO2K2OZnFeAl2O3SiO2MgOCaO
    1.530.310.150.870.260.322.190.0112.927.3662.193.776.46
    注:*单位为g/t。
    下载: 导出CSV

    表 2  原矿矿物组成分析结果 单位:%

    Table 2.  Analysis results of the mineral composition of the raw ore

    石英方解石片硅铝石毒砂和黄铁矿铁白云石石膏其他矿物
    34.0017.9037.201.264.500.954.19
    下载: 导出CSV

    表 3  工艺流程对比实验结果

    Table 3.  Results of the comparative test of the process flows

    工艺 产品名称 产率/% Au品
    位/(g/t)
    Au回
    收率/%
    摇床―浮选 重选精矿 1.01 10.51 7.27
    浮选粗精矿 17.33 4.89 58.05
    重选+浮选粗精矿 18.34 5.20 65.32
    尾矿 81.66 0.62 34.68
    原矿 100.00 1.46 100.00
    浮选 浮选粗精矿 19.29 5.32 68.67
    尾矿 80.71 0.58 31.33
    原矿 100.00 1.49 100.00
    下载: 导出CSV

    表 4  开路实验结果

    Table 4.  Results of the open-circuit test

    产品名称产率Au品位/(g/t)Au回收率/%
    金精矿1.6244.9047.73
    中矿22.607.6713.09
    中矿18.632.9316.59
    扫选中矿3.842.025.10
    尾矿83.310.3217.49
    原矿100.001.52100.00
    下载: 导出CSV

    表 5  闭路实验结果

    Table 5.  Results of the closed-circuit test

    产品名称产率/%Au品位/(g/t)Au回收率/%
    金精矿2.9140.2076.44
    尾矿97.090.3723.56
    原矿100.001.53100.00
    下载: 导出CSV

    表 6  金精矿多元素分析结果 单位:%

    Table 6.  Analysis results of multi-elements of concentrate

    Au*AsCuSPbTiO2K2OZnFeAl2O3SiO2MgOCaO
    40.38.423.3024.140.210.190.540.1926.072.4334.025.113.80
    注:*单位为g/t。
    下载: 导出CSV

    表 7  尾矿多元素分析结果 单位:%

    Table 7.  Analysis results of multi-elements of tailings

    Au*AsCuSPbTiO2K2OZnFeAl2O3SiO2MgOCaO
    0.360.0550.0530.1250.0150.352.220.0092.237.5166.003.676.61
    注:*单位为g/t。
    下载: 导出CSV
  • [1]

    邱曼, 黄学雄, 毛益林, 等. 我国金矿资源概况及选冶技术研究进展[J]. 矿产综合利用, 2023, 44(2):106-115.QIU M, HUANG X X, MAO Y L, et al. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2):106-115. doi: 10.3969/j.issn.1000-6532.2023.02.019

    QIU M, HUANG X X, MAO Y L, et al. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2):106-115. doi: 10.3969/j.issn.1000-6532.2023.02.019

    [2]

    陈艳波, 李光胜, 朱幸福, 等. 甘肃某含砷高硫金矿浮选实验[J]. 矿产综合利用, 2024, 45(3):206-210.CHEN Y B, LI G S, ZHU X F, et al. Flotation experiment on a high-sulfur and arsenic-bearing gold ore in Gansu[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3):206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032

    CHEN Y B, LI G S, ZHU X F, et al. Flotation experiment on a high-sulfur and arsenic-bearing gold ore in Gansu[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3):206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032

    [3]

    潘彦岑, 靳建平, 李艳军, 等. 某高硫砷难处理金矿石选矿试验研究[J]. 金属矿山, 2024(1):220-225.PAN Y C, JIN J P, LI Y J, et al. Experimental study on beneficiation of a high-sulfur and arsenic-bearing refractory gold ore[J]. Metal Mine, 2024(1):220-225.

    PAN Y C, JIN J P, LI Y J, et al. Experimental study on beneficiation of a high-sulfur and arsenic-bearing refractory gold ore[J]. Metal Mine, 2024(1):220-225.

    [4]

    吴天骄, 曹欢, 牛芳银, 等. 某含碳微细粒难处理金矿浮选提金工艺研究[J]. 黄金科学技术, 2021, 29(5):761-770.WU T J, CAO H, NIU F Y, et al. Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J]. Gold Science and Technology, 2021, 29(5):761-770.

    WU T J, CAO H, NIU F Y, et al. Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J]. Gold Science and Technology, 2021, 29(5):761-770.

    [5]

    周光浪, 周东云. 多硫化物微细粒浸染型金矿回收金试验研究[J]. 贵金属, 2023, 44(1):47-53.ZHOU G L, ZHOU D Y. Experimental study on gold recovery from polysulfide fine-grained disseminated gold mines[J]. Precious Metals, 2023, 44(1):47-53.

    ZHOU G L, ZHOU D Y. Experimental study on gold recovery from polysulfide fine-grained disseminated gold mines[J]. Precious Metals, 2023, 44(1):47-53.

    [6]

    明平田, 李飞. 某微细粒蚀变岩型金矿高效浮选新工艺研究[J]. 矿产综合利用, 2019(4):73-78.MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015

    MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015

    [7]

    明平田, 马生萍, 丁超, 等. 青海某少硫化物难选金矿选矿实验研究[J/OL]. 矿产综合利用, 2024, 45(6): 161-168.MING P T, MA S P, DING C, et al. Experimental study on flotation technology for low-sulfide refractory gold ore from Qinghai[J/OL]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 161-168

    MING P T, MA S P, DING C, et al. Experimental study on flotation technology for low-sulfide refractory gold ore from Qinghai[J/OL]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 161-168

    [8]

    朱国庆, 杜淑华, 夏亮, 等. 国外某含蛇纹石绿泥石微细粒难选金矿石选矿试验[J]. 金属矿山, 2021(5):115-119.ZHU G Q, DU S H, XIA L, et al. Experimental study on beneficiation of a fine-grained refractory gold ore containing serpentine and chlorite from abroad[J]. Metal Mine, 2021(5):115-119.

    ZHU G Q, DU S H, XIA L, et al. Experimental study on beneficiation of a fine-grained refractory gold ore containing serpentine and chlorite from abroad[J]. Metal Mine, 2021(5):115-119.

    [9]

    张润身, 代淑娟, 胡志刚, 等. 某微细粒嵌布金矿石浮选试验研究[J]. 金属矿山, 2010(2):76-79.ZHANG R S, DAI S J, HU Z G, et al. Experimental study on flotation of a fine-grained disseminated gold ore[J]. Metal Mine, 2010(2):76-79.

    ZHANG R S, DAI S J, HU Z G, et al. Experimental study on flotation of a fine-grained disseminated gold ore[J]. Metal Mine, 2010(2):76-79.

    [10]

    LI J, TONG L, ZHANG H, et al. Pool bio-oxidation and fitting analysis of low-grade arsenic-containing refractory gold ore[J]. Green Chemical Engineering, 2024, 5(4):511-518. doi: 10.1016/j.gce.2024.01.001

    [11]

    朱文超. 贵州某高碳微细粒金矿选矿试验研究[J]. 湖南有色金属, 2022, 38(5):11-15.ZHU W C. Experimental study on mineral processing of a high-carbon fine-grained gold ore in Guizhou[J]. Hunan Nonferrous Metals, 2022, 38(5):11-15.

    ZHU W C. Experimental study on mineral processing of a high-carbon fine-grained gold ore in Guizhou[J]. Hunan Nonferrous Metals, 2022, 38(5):11-15.

    [12]

    罗国清, 黄霞光, 李杨, 等. 湖南某金矿石选矿试验研究[J]. 现代矿业, 2022, 38(8):164-166.LUO G Q, HUANG X G, LI Y, et al. Experimental study on mineral processing of a gold ore in Hunan[J]. Modern Mining, 2022, 38(8):164-166.

    LUO G Q, HUANG X G, LI Y, et al. Experimental study on mineral processing of a gold ore in Hunan[J]. Modern Mining, 2022, 38(8):164-166.

    [13]

    杨林, 李晓阳, 简胜. 国外某毒砂型金矿提取预富集工艺技术研究[J]. 贵金属, 2015, 36(S1):174-177.YANG L, LI X Y, JIAN S. The extraction enrichment study of a foreign gold ore which exist in arsenopyrite[J]. Precious Metals, 2015, 36(S1):174-177.

    YANG L, LI X Y, JIAN S. The extraction enrichment study of a foreign gold ore which exist in arsenopyrite[J]. Precious Metals, 2015, 36(S1):174-177.

    [14]

    王垚波. 塔吉克斯坦某金矿矿床地质特征及成因分析[J]. 世界有色金属, 2022(23):85-87.WANG Y B. Geological characteristics and genesis analysis of a gold deposit in Tajikistan[J]. World Nonferrous Metals, 2022(23):85-87.

    WANG Y B. Geological characteristics and genesis analysis of a gold deposit in Tajikistan[J]. World Nonferrous Metals, 2022(23):85-87.

    [15]

    詹承淮. 塔吉克斯坦某金矿地质构造特征及成矿规律浅析[J]. 西部资源, 2018(1):39-40.ZHAN C H. Analysis of geological structure characteristics and metallogenic regularity of a gold mine in Tajikistan[J]. Western Resources, 2018(1):39-40.

    ZHAN C H. Analysis of geological structure characteristics and metallogenic regularity of a gold mine in Tajikistan[J]. Western Resources, 2018(1):39-40.

    [16]

    王勇义. 塔吉克斯坦某矿区金矿床的地质特征及矿床成因[J]. 世界有色金属, 2019(3):93-94.WANG Y Y. Geological characteristics and genesis of a gold deposit in a mining area of Tajikistan[J]. World Nonferrous Metals, 2019(3):93-94. doi: 10.3969/j.issn.1002-5065.2019.03.054

    WANG Y Y. Geological characteristics and genesis of a gold deposit in a mining area of Tajikistan[J]. World Nonferrous Metals, 2019(3):93-94. doi: 10.3969/j.issn.1002-5065.2019.03.054

    [17]

    NIE Y, CHEN J, WANG Q, et al. Use of dry grinding process to increase the leaching of gold from a roasted concentrate containing hematite in the thiosulfate system[J]. Hydrometallurgy, 2021, 201(4):105582.

    [18]

    明平田, 李飞, 陈自强, 等. 青海某低品位难选金矿扫选精矿再磨再选实践及应用[J]. 矿产综合利用, 2024, 45(5):15-23.MING P T, LI F, CHEN Z Q, et al. Practice and application of regrinding and re-election of swept concentrate from a low-grade difficult gold ore in qinghai province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):15-23.

    MING P T, LI F, CHEN Z Q, et al. Practice and application of regrinding and re-election of swept concentrate from a low-grade difficult gold ore in qinghai province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):15-23.

    [19]

    蔡明明, 张文平, 徐超, 等. 某难选金矿物工艺矿物学研 究[J]. 矿产综合利用, 2022(5):193-198.CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198.

    CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198.

    [20]

    刘惠中, 彭志龙. 选矿摇床的研究现状及发展趋势[J]. 有色金属(选矿部分), 2023(5):120-126.LIU H Z, PENG Z L. Research status and development trend of mineral processing shaking tables[J]. Nonferrous Metals(Mineral Processing Section), 2023(5):120-126.

    LIU H Z, PENG Z L. Research status and development trend of mineral processing shaking tables[J]. Nonferrous Metals(Mineral Processing Section), 2023(5):120-126.

    [21]

    冯博, 柯珍, 阳栩生. 微细粒矿物浮选研究进展:机理、技术、设备及检测方法[J]. 有色金属(选矿部分), 2024(12):1-18.FENG B, KE Z, YANG X S. Research progress of flotation of fine-grained minerals: mechanism, technology, equipment and detection methods[J]. Nonferrous Metals(Mineral Processing Section), 2024(12):1-18.

    FENG B, KE Z, YANG X S. Research progress of flotation of fine-grained minerals: mechanism, technology, equipment and detection methods[J]. Nonferrous Metals(Mineral Processing Section), 2024(12):1-18.

    [22]

    谢贤, 童雄.一种回收含锑金矿浮选尾矿中金及微细粒锑矿物的方法:201610911218.1[P].2018-12-14.XIE X, TONG X. A method for recovering gold and microfine-grained antimony minerals in antimony-containing gold ore flotation tailings:201610911218.1[P].2018-12-14.

    XIE X, TONG X. A method for recovering gold and microfine-grained antimony minerals in antimony-containing gold ore flotation tailings:201610911218.1[P].2018-12-14.

    [23]

    李正要,林蜀勇,王金虎,等.一种从生物预氧化-炭浆法提金尾渣中浮选回收金的方法: 201410757187.X[P].2015-10-07.LI Z Y, LIN S Y, WANG J H, et al. A method of gold recovery by flotation from gold extraction tailings of biological pre-oxidation-carbon slurry method: 201410757187.X[P].2015-10-07.

    LI Z Y, LIN S Y, WANG J H, et al. A method of gold recovery by flotation from gold extraction tailings of biological pre-oxidation-carbon slurry method: 201410757187.X[P].2015-10-07.

  • 加载中

(12)

(7)

计量
  • 文章访问数:  26
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2025-05-07
刊出日期:  2025-08-25

目录