新型黄铜矿抑制剂GX3对铜钼浮选分离的影响及机理

徐文涛, 蔺月萌, 韩百岁, 谢昊宇. 新型黄铜矿抑制剂GX3对铜钼浮选分离的影响及机理[J]. 矿产综合利用, 2025, 46(4): 91-99. doi: 10.12476/kczhly.202403050087
引用本文: 徐文涛, 蔺月萌, 韩百岁, 谢昊宇. 新型黄铜矿抑制剂GX3对铜钼浮选分离的影响及机理[J]. 矿产综合利用, 2025, 46(4): 91-99. doi: 10.12476/kczhly.202403050087
XU Wentao, LIN Yuemeng, HAN Baisui, XIE Haoyu. Effect and Mechanism of New Chalcopyrite Depressant GX3 on Flotation Separation of Copper and Molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 91-99. doi: 10.12476/kczhly.202403050087
Citation: XU Wentao, LIN Yuemeng, HAN Baisui, XIE Haoyu. Effect and Mechanism of New Chalcopyrite Depressant GX3 on Flotation Separation of Copper and Molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 91-99. doi: 10.12476/kczhly.202403050087

新型黄铜矿抑制剂GX3对铜钼浮选分离的影响及机理

  • 基金项目: 2021年度优秀青年人才项目(2021YQ05);省教育厅项目(JYTMS20230953)
详细信息
    作者简介: 徐文涛(1999-),男,硕士研究生
    通讯作者: 韩百岁(1987-),男,副教授,硕士生导师,主要从事硫化矿浮选等方向
  • 中图分类号: TD952

Effect and Mechanism of New Chalcopyrite Depressant GX3 on Flotation Separation of Copper and Molybdenum

More Information
  • 针对传统黄铜矿抑制剂存在的污染环境和药剂消耗量大等问题,开发新的抑制剂以实现铜钼有效分离具有重要意义。研究了一种新型黄铜矿抑制剂GX3,通过单矿物与人工混合矿浮选实验,讨论了新型抑制剂GX3对Cu、Mo分离效果的影响,探究有无PAX、抑制剂浓度和pH值对黄铜矿和辉钼矿可浮性及铜钼分离性能的影响,采用接触角、Zeta电位、红外光谱、X射线光电子能谱等分析抑制剂与矿物间的作用机理。浮选结果表明:当PAX浓度为10 mg/L时,在pH值为8~12范围和煤油浓度为20 mg/L的条件下,GX3浓度500 mg/L时,黄铜矿的回收率降至20%,而辉钼矿上浮回收率达87%,进而实现铜钼的高效分离。机理研究表明:GX3可以氧化黄铜矿表面生成亲水的氧化物与氢氧化物,使黄铜矿受到抑制,而对辉钼矿的疏水性和表面性质几乎没有影响,从而实现铜钼的有效浮选分离。

  • 加载中
  • 图 1  (a)黄铜矿和(b)辉钼矿的纯矿物XRD

    Figure 1. 

    图 2  浮选实验的流程和条件

    Figure 2. 

    图 3  不同GX3浓度对黄铜矿与辉钼矿浮选行为的影响结果

    Figure 3. 

    图 4  矿浆pH值对黄铜矿与辉钼矿回收率的影响结果

    Figure 4. 

    图 5  GX3浓度对黄铜矿与辉钼矿回收率的影响结果

    Figure 5. 

    图 6  pH值对黄铜矿与辉钼矿回收率的影响结果

    Figure 6. 

    图 7  GX3抑制剂与黄铜矿和辉钼矿接触角关系的结果

    Figure 7. 

    图 8  黄铜矿和辉钼矿的Zeta电位

    Figure 8. 

    图 9  GX3处理前后黄铜矿(a)与辉钼矿(b)的红外光谱

    Figure 9. 

    图 10  黄铜矿与GX3 C 1s谱

    Figure 10. 

    图 11  黄铜矿与GX3 Cu 2p谱

    Figure 11. 

    图 12  黄铜矿与GX3 Fe 2p谱

    Figure 12. 

    图 13  黄铜矿与GX3 S 2p谱

    Figure 13. 

    图 14  辉钼矿与GX3 Mo 3d谱

    Figure 14. 

    图 15  辉钼矿与GX3 S 2p谱

    Figure 15. 

  • [1]

    关智文, 杨丙桥, 胡杨甲. 一种新型辉钼矿抑制剂及其在铜钼浮选分离中的机理研究[J]. 有色金属(选矿部分), 2022(5):171-176.GUAN Z W, YANG B Q, HU Y J. A novel molybdenite depressant and its mechanism in flotation separation of copper and molybdenum[J]. Nonferrous Metals(Mineral Processing Section), 2022(5):171-176.

    GUAN Z W, YANG B Q, HU Y J. A novel molybdenite depressant and its mechanism in flotation separation of copper and molybdenum[J]. Nonferrous Metals(Mineral Processing Section), 2022(5):171-176.

    [2]

    张亮, 杨卉芃, 冯安生,等. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16.ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16.

    ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16.

    [3]

    朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1):172-178.ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1):172-178.

    ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1):172-178.

    [4]

    郭谨铭, 杨洪英, 孟晶, 等. 西藏甲玛铜钼矿浮选产品工艺矿物学[J]. 东北大学学报:自然科学版, 2023, 44(8):1195-1200.GUO J M, YANG H Y, MENG J, et al. Process mineralogy study on flotation products of copper-molybdenum ore in Jiama, Xizang[J]. Journal of Northeastern University: Natural Science Edition, 2023, 44(8):1195-1200.

    GUO J M, YANG H Y, MENG J, et al. Process mineralogy study on flotation products of copper-molybdenum ore in Jiama, Xizang[J]. Journal of Northeastern University: Natural Science Edition, 2023, 44(8):1195-1200.

    [5]

    张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49.ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49.

    ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49.

    [6]

    张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1):1-5.ZHANG L, DAI H X, DU W X. Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-5.

    ZHANG L, DAI H X, DU W X. Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-5.

    [7]

    赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2):1-7.ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7.

    ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7.

    [8]

    陈桂泉, 杨若瑜, 吕向文, 等. KMD系列铜抑制剂用于江西德兴铜矿铜钼分离[J/OL]. 矿产综合利用(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3RQcJ4Qz6DVs76EP1iM2w3llIFtX_VRSprNgY-LMsCSUS7xg8IYuVRk8bjt6Utb009n40234Kk7kVIPHylbG9CD__Tqh7keKW9T1mZL0QkKXczC8ShM-gBbWrZj08W_n0=&uniplatform=NZKPT&language=CHS.CHEN G Q, YANG R Y, LYU X W, et al. KMD series copper depressant for the separation of copper and molybdenum in Jiangxi Dexing copper mine[J/OL]. Multipurpose Utilization of Mineral Resources (2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3RQcJ4Qz6DVs76EP1iM2w3llIFtX_VRSprNgY-LMsCSUS7xg8IYuVRk8bjt6Utb009n40234Kk7kVIPHylbG9CD__Tqh7keKW9T1mZL0QkKXczC8ShM-gBbWrZj08W_n0=&uniplatform=NZKPT&language=CHS.

    CHEN G Q, YANG R Y, LYU X W, et al. KMD series copper depressant for the separation of copper and molybdenum in Jiangxi Dexing copper mine[J/OL]. Multipurpose Utilization of Mineral Resources (2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3RQcJ4Qz6DVs76EP1iM2w3llIFtX_VRSprNgY-LMsCSUS7xg8IYuVRk8bjt6Utb009n40234Kk7kVIPHylbG9CD__Tqh7keKW9T1mZL0QkKXczC8ShM-gBbWrZj08W_n0=&uniplatform=NZKPT&language=CHS.

    [9]

    YANG B, YAN H, ZENG M, et al. Tiopronin as a novel copper depressant for the selective flotation separation of chalcopyrite and molybdenite[J]. Separation and Purification Technology, 2021, 266:118576. doi: 10.1016/j.seppur.2021.118576

    [10]

    焦跃旭, 姚新, 陈鹏, 等. 新型高效辉钼矿抑制剂及其作用机理研究[J]. 矿冶工程, 2020, 40(6):30-33.JIAO Y X, YAO X, CHEN P, et al. Depressing mechanism of a novel and efficient molybdenite depressant[J]. Mining and Metallurgical Engineering, 2020, 40(6):30-33.

    JIAO Y X, YAO X, CHEN P, et al. Depressing mechanism of a novel and efficient molybdenite depressant[J]. Mining and Metallurgical Engineering, 2020, 40(6):30-33.

    [11]

    张村. 硫化铜钼矿的新型抑制剂及其机理研究[D]. 赣州:江西理工大学, 2017.ZHANG C. Research on the new inhibitor of sulfide copper-molybdenum mine and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    ZHANG C. Research on the new inhibitor of sulfide copper-molybdenum mine and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    [12]

    WANG C T,LIU R Q,WU M R,et al. Flotation separation of molybdenite from chalcopyrite using rhodanine-3-acetic acid as a novel and effective depressant[J]. Minerals Engineering, 2021, 162.

    [13]

    YIN Z, SUN W, HU Y, et al. Utilization of acetic acid-[(Hydrazinylthioxomethyl)thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite[J]. Separation and Purification Technology, 2017, 179:248-256. doi: 10.1016/j.seppur.2017.01.049

    [14]

    夏亮, 杜淑华, 朱国庆, 等. 安徽某含泥难选铜钼矿选矿实验[J]. 矿产综合利用, 2019(3):44-47.XIA L, DU S H, ZHU G Q, et al. Beneficiation of a refractory Cu-Mo ore containing high-content slimes in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(3):44-47.

    XIA L, DU S H, ZHU G Q, et al. Beneficiation of a refractory Cu-Mo ore containing high-content slimes in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(3):44-47.

    [15]

    王忠锋. 河南某铜钼矿选矿试验研究[J]. 中国钼业, 2018, 42(1):27-31.WANG Z F. An experimental study on ore beneficiation of a copper-molybdenum mine in Henan[J]. China Molybdenum Industry, 2018, 42(1):27-31.

    WANG Z F. An experimental study on ore beneficiation of a copper-molybdenum mine in Henan[J]. China Molybdenum Industry, 2018, 42(1):27-31.

    [16]

    修大伟, 李丽, 刘金浪. 钼精矿降铜应用实践[J]. 有色金属(选矿部分), 2021(4):99-103.XIU D W, LI L, LIU J L. Application practice of copper reduction in molybdenum concentrate[J]. Nonferrous Metals(Mineral Processing Section), 2021(4):99-103.

    XIU D W, LI L, LIU J L. Application practice of copper reduction in molybdenum concentrate[J]. Nonferrous Metals(Mineral Processing Section), 2021(4):99-103.

    [17]

    周利华. 西藏某铜钼多金属矿浮选工艺流程优化实验研究[J/OL]. 矿产综合利用(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q0qUrIejk7CUx0j3E8r3X1GLJPEZggPY2QWHbKjZIEyJKREWKTDqIJzr6-nxqXyMdOFOqZUotCkCN-JlTqiP8-j4E1qFC2sO-mgxtR0CNd_-s_YHbO-XMx65oNEjH5r8PQ=&uniplatform=NZKPT&language=CHSZHOU L H. Experimental study on flotation process optimization of a copper molybdenum polymetallic ore in Xizang[J/OL]. Multipurpose Utilization of Mineral Resources(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q0qUrIejk7CUx0j3E8r3X1GLJPEZggPY2QWHbKjZIEyJKREWKTDqIJzr6-nxqXyMdOFOqZUotCkCN-JlTqiP8-j4E1qFC2sO-mgxtR0CNd_-s_YHbO-XMx65oNEjH5r8PQ=&uniplatform=NZKPT&language=CHS

    ZHOU L H. Experimental study on flotation process optimization of a copper molybdenum polymetallic ore in Xizang[J/OL]. Multipurpose Utilization of Mineral Resources(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q0qUrIejk7CUx0j3E8r3X1GLJPEZggPY2QWHbKjZIEyJKREWKTDqIJzr6-nxqXyMdOFOqZUotCkCN-JlTqiP8-j4E1qFC2sO-mgxtR0CNd_-s_YHbO-XMx65oNEjH5r8PQ=&uniplatform=NZKPT&language=CHS

    [18]

    Yin Z, Sun W, Hu Y, et al. Utilization of acetic acid-[(hydrazinylthioxomethyl)thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite[J]. Separation & Purification Technology, 2017, 179:248-256.

    [19]

    简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺[J]. 矿产综合利用, 2019(5):32-36+16.JIAN S, HU Y H, SUN W. Process of a low-grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36+16.

    JIAN S, HU Y H, SUN W. Process of a low-grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36+16.

    [20]

    严海. 铜钼浮选分离新型抑制剂及其机理研究[D].武汉:武汉工程大学,2022.YAN H. Study on the novel depressant of copper-molybdenum flotation separation and its mechanism[D]. Wuhan: Wuhan Institute of Technology, 2022.

    YAN H. Study on the novel depressant of copper-molybdenum flotation separation and its mechanism[D]. Wuhan: Wuhan Institute of Technology, 2022.

  • 加载中

(15)

计量
  • 文章访问数:  29
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-03-05
刊出日期:  2025-08-25

目录