Effect and Mechanism of New Chalcopyrite Depressant GX3 on Flotation Separation of Copper and Molybdenum
-
摘要:
针对传统黄铜矿抑制剂存在的污染环境和药剂消耗量大等问题,开发新的抑制剂以实现铜钼有效分离具有重要意义。研究了一种新型黄铜矿抑制剂GX3,通过单矿物与人工混合矿浮选实验,讨论了新型抑制剂GX3对Cu、Mo分离效果的影响,探究有无PAX、抑制剂浓度和pH值对黄铜矿和辉钼矿可浮性及铜钼分离性能的影响,采用接触角、Zeta电位、红外光谱、X射线光电子能谱等分析抑制剂与矿物间的作用机理。浮选结果表明:当PAX浓度为10 mg/L时,在pH值为8~12范围和煤油浓度为20 mg/L的条件下,GX3浓度500 mg/L时,黄铜矿的回收率降至20%,而辉钼矿上浮回收率达87%,进而实现铜钼的高效分离。机理研究表明:GX3可以氧化黄铜矿表面生成亲水的氧化物与氢氧化物,使黄铜矿受到抑制,而对辉钼矿的疏水性和表面性质几乎没有影响,从而实现铜钼的有效浮选分离。
Abstract:In view of the problems of environmental pollution and large consumption of reagents in traditional chalcopyrite depressant, it is of great significance to develop new depressant to achieve effective separation of copper and molybdenum. A new type of depressant GX3 was studied. The effects of PAX, depressant concentration and pH value on the floatability of chalcopyrite and molybdenite and the separation performance of copper and molybdenum were investigated by single mineral and mixed mineral flotation tests. The mechanism of action between depressant and minerals was analyzed by contact angle, Zeta potential, infrared spectroscopy and X-ray photoelectron spectroscopy. The flotation results show that when the concentration of PAX is 10 mg/L, the recovery rate of chalcopyrite is reduced to 20% and the recovery rate of molybdenite is 87% when the concentration of GX3 is 500 mg/L at the condition of pH value 8 ~ 12 and kerosene concentration of 20 mg/L, thus achieving efficient separation of copper and molybdenum. The mechanism study shows that GX3 can oxidize the surface of chalcopyrite to form hydrophilic oxides and hydroxides, which inhibits chalcopyrite, but has little effect on the hydrophobicity and surface properties of molybdenite, thus achieving effective flotation separation of copper and molybdenum.
-
Key words:
- chalcopyrite /
- molybdenite /
- Cu-Mo separation /
- depressant /
- mechanism
-
-
[1] 关智文, 杨丙桥, 胡杨甲. 一种新型辉钼矿抑制剂及其在铜钼浮选分离中的机理研究[J]. 有色金属(选矿部分), 2022(5):171-176.GUAN Z W, YANG B Q, HU Y J. A novel molybdenite depressant and its mechanism in flotation separation of copper and molybdenum[J]. Nonferrous Metals(Mineral Processing Section), 2022(5):171-176.
GUAN Z W, YANG B Q, HU Y J. A novel molybdenite depressant and its mechanism in flotation separation of copper and molybdenum[J]. Nonferrous Metals(Mineral Processing Section), 2022(5):171-176.
[2] 张亮, 杨卉芃, 冯安生,等. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16.ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16.
ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16.
[3] 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1):172-178.ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1):172-178.
ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1):172-178.
[4] 郭谨铭, 杨洪英, 孟晶, 等. 西藏甲玛铜钼矿浮选产品工艺矿物学[J]. 东北大学学报:自然科学版, 2023, 44(8):1195-1200.GUO J M, YANG H Y, MENG J, et al. Process mineralogy study on flotation products of copper-molybdenum ore in Jiama, Xizang[J]. Journal of Northeastern University: Natural Science Edition, 2023, 44(8):1195-1200.
GUO J M, YANG H Y, MENG J, et al. Process mineralogy study on flotation products of copper-molybdenum ore in Jiama, Xizang[J]. Journal of Northeastern University: Natural Science Edition, 2023, 44(8):1195-1200.
[5] 张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49.ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49.
ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49.
[6] 张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1):1-5.ZHANG L, DAI H X, DU W X. Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-5.
ZHANG L, DAI H X, DU W X. Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-5.
[7] 赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2):1-7.ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7.
ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7.
[8] 陈桂泉, 杨若瑜, 吕向文, 等. KMD系列铜抑制剂用于江西德兴铜矿铜钼分离[J/OL]. 矿产综合利用(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3RQcJ4Qz6DVs76EP1iM2w3llIFtX_VRSprNgY-LMsCSUS7xg8IYuVRk8bjt6Utb009n40234Kk7kVIPHylbG9CD__Tqh7keKW9T1mZL0QkKXczC8ShM-gBbWrZj08W_n0=&uniplatform=NZKPT&language=CHS.CHEN G Q, YANG R Y, LYU X W, et al. KMD series copper depressant for the separation of copper and molybdenum in Jiangxi Dexing copper mine[J/OL]. Multipurpose Utilization of Mineral Resources (2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3RQcJ4Qz6DVs76EP1iM2w3llIFtX_VRSprNgY-LMsCSUS7xg8IYuVRk8bjt6Utb009n40234Kk7kVIPHylbG9CD__Tqh7keKW9T1mZL0QkKXczC8ShM-gBbWrZj08W_n0=&uniplatform=NZKPT&language=CHS.
CHEN G Q, YANG R Y, LYU X W, et al. KMD series copper depressant for the separation of copper and molybdenum in Jiangxi Dexing copper mine[J/OL]. Multipurpose Utilization of Mineral Resources (2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3RQcJ4Qz6DVs76EP1iM2w3llIFtX_VRSprNgY-LMsCSUS7xg8IYuVRk8bjt6Utb009n40234Kk7kVIPHylbG9CD__Tqh7keKW9T1mZL0QkKXczC8ShM-gBbWrZj08W_n0=&uniplatform=NZKPT&language=CHS.
[9] YANG B, YAN H, ZENG M, et al. Tiopronin as a novel copper depressant for the selective flotation separation of chalcopyrite and molybdenite[J]. Separation and Purification Technology, 2021, 266:118576. doi: 10.1016/j.seppur.2021.118576
[10] 焦跃旭, 姚新, 陈鹏, 等. 新型高效辉钼矿抑制剂及其作用机理研究[J]. 矿冶工程, 2020, 40(6):30-33.JIAO Y X, YAO X, CHEN P, et al. Depressing mechanism of a novel and efficient molybdenite depressant[J]. Mining and Metallurgical Engineering, 2020, 40(6):30-33.
JIAO Y X, YAO X, CHEN P, et al. Depressing mechanism of a novel and efficient molybdenite depressant[J]. Mining and Metallurgical Engineering, 2020, 40(6):30-33.
[11] 张村. 硫化铜钼矿的新型抑制剂及其机理研究[D]. 赣州:江西理工大学, 2017.ZHANG C. Research on the new inhibitor of sulfide copper-molybdenum mine and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
ZHANG C. Research on the new inhibitor of sulfide copper-molybdenum mine and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
[12] WANG C T,LIU R Q,WU M R,et al. Flotation separation of molybdenite from chalcopyrite using rhodanine-3-acetic acid as a novel and effective depressant[J]. Minerals Engineering, 2021, 162.
[13] YIN Z, SUN W, HU Y, et al. Utilization of acetic acid-[(Hydrazinylthioxomethyl)thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite[J]. Separation and Purification Technology, 2017, 179:248-256. doi: 10.1016/j.seppur.2017.01.049
[14] 夏亮, 杜淑华, 朱国庆, 等. 安徽某含泥难选铜钼矿选矿实验[J]. 矿产综合利用, 2019(3):44-47.XIA L, DU S H, ZHU G Q, et al. Beneficiation of a refractory Cu-Mo ore containing high-content slimes in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(3):44-47.
XIA L, DU S H, ZHU G Q, et al. Beneficiation of a refractory Cu-Mo ore containing high-content slimes in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(3):44-47.
[15] 王忠锋. 河南某铜钼矿选矿试验研究[J]. 中国钼业, 2018, 42(1):27-31.WANG Z F. An experimental study on ore beneficiation of a copper-molybdenum mine in Henan[J]. China Molybdenum Industry, 2018, 42(1):27-31.
WANG Z F. An experimental study on ore beneficiation of a copper-molybdenum mine in Henan[J]. China Molybdenum Industry, 2018, 42(1):27-31.
[16] 修大伟, 李丽, 刘金浪. 钼精矿降铜应用实践[J]. 有色金属(选矿部分), 2021(4):99-103.XIU D W, LI L, LIU J L. Application practice of copper reduction in molybdenum concentrate[J]. Nonferrous Metals(Mineral Processing Section), 2021(4):99-103.
XIU D W, LI L, LIU J L. Application practice of copper reduction in molybdenum concentrate[J]. Nonferrous Metals(Mineral Processing Section), 2021(4):99-103.
[17] 周利华. 西藏某铜钼多金属矿浮选工艺流程优化实验研究[J/OL]. 矿产综合利用(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q0qUrIejk7CUx0j3E8r3X1GLJPEZggPY2QWHbKjZIEyJKREWKTDqIJzr6-nxqXyMdOFOqZUotCkCN-JlTqiP8-j4E1qFC2sO-mgxtR0CNd_-s_YHbO-XMx65oNEjH5r8PQ=&uniplatform=NZKPT&language=CHSZHOU L H. Experimental study on flotation process optimization of a copper molybdenum polymetallic ore in Xizang[J/OL]. Multipurpose Utilization of Mineral Resources(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q0qUrIejk7CUx0j3E8r3X1GLJPEZggPY2QWHbKjZIEyJKREWKTDqIJzr6-nxqXyMdOFOqZUotCkCN-JlTqiP8-j4E1qFC2sO-mgxtR0CNd_-s_YHbO-XMx65oNEjH5r8PQ=&uniplatform=NZKPT&language=CHS
ZHOU L H. Experimental study on flotation process optimization of a copper molybdenum polymetallic ore in Xizang[J/OL]. Multipurpose Utilization of Mineral Resources(2023-11-13) [2024-03-05]. https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q0qUrIejk7CUx0j3E8r3X1GLJPEZggPY2QWHbKjZIEyJKREWKTDqIJzr6-nxqXyMdOFOqZUotCkCN-JlTqiP8-j4E1qFC2sO-mgxtR0CNd_-s_YHbO-XMx65oNEjH5r8PQ=&uniplatform=NZKPT&language=CHS
[18] Yin Z, Sun W, Hu Y, et al. Utilization of acetic acid-[(hydrazinylthioxomethyl)thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite[J]. Separation & Purification Technology, 2017, 179:248-256.
[19] 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺[J]. 矿产综合利用, 2019(5):32-36+16.JIAN S, HU Y H, SUN W. Process of a low-grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36+16.
JIAN S, HU Y H, SUN W. Process of a low-grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36+16.
[20] 严海. 铜钼浮选分离新型抑制剂及其机理研究[D].武汉:武汉工程大学,2022.YAN H. Study on the novel depressant of copper-molybdenum flotation separation and its mechanism[D]. Wuhan: Wuhan Institute of Technology, 2022.
YAN H. Study on the novel depressant of copper-molybdenum flotation separation and its mechanism[D]. Wuhan: Wuhan Institute of Technology, 2022.
-