Enrichment Mechanism of Rare Earth Elements in the Aluminum-bearing Rock Series of the Jinsha Area in Northwest Guizhou Province
-
摘要:
黔西北金沙地区下石炭统九架炉组含铝岩系中稀土元素含量较高,具有一定勘探潜力。本文通过野外剖面测量、探槽编录、岩心编录、镜下鉴定、主微量、稀土元素化学分析等方法,研究含铝岩系中稀土元素富集机制,得出:黔西北金沙地区含铝岩系中ΣREE含量较高,在156.30×10-6~1 543.70×10-6之间,平均为743.49 ×10-6,轻稀土相对富集,ΣLREE/ΣHREE值在2.20~10.69之间。含铝岩系中稀土元素的富集受黏土矿物含量、含铁矿物等多种因素共同影响,轻稀土在碱性条件下水解率较高易富集,氧化环境下有利于REE3+的沉积,土状铝土矿沉积水体呈弱碱性,沉积环境为氧化环境,为稀土元素的富集提供了良好的富集条件,钻孔ZK01底部高铁土状铝土矿中稀土元素含量在0.115%~0.150%,指示金沙地区含铝岩系中稀土元素具有较大勘探潜力。
Abstract:The rare earth element (REE) content in the aluminum-bearing rock series of the Lower Carboniferous Jiujialu Formation in the Jinsha Area of northwest Guizhou is relatively high, showing certain exploration potential. This paper studies the enrichment mechanism of REE in the aluminum-bearing rock series through field profile measurement, trench logging, core logging, microscopic identification, major and trace element, and REE chemical analysis. The results show that the ΣREE content in the aluminum-bearing rock series of the Jinsha Area in northwest Guizhou is relatively high, ranging from 156.31×10-6 to 1 543.70×10-6, with an average of 743.49×10-6. Light rare earth elements are relatively enriched, and the ΣLREE/ΣHREE value ranges from 2.20 to 10.69. The enrichment of REE in the aluminum-bearing rock series is influenced by multiple factors such as the content of clay minerals and iron-bearing minerals. Light rare earth elements have a higher hydrolysis rate at alkaline conditions and are easily enriched. An oxidized environment is conducive to the deposition of REE3+. The water body of the limonitic bauxite in the Jinsha Area is weakly alkaline, and the sedimentary environment is oxidized, providing favorable conditions for the enrichment of REE. The REE content in the high-iron limonitic bauxite at the bottom of borehole ZK01 ranges from 0.115% to 0.150%, indicating that the aluminum-bearing rock series in the Jinsha Area has great exploration potential for REE.
-
Key words:
- southwest Guizhou /
- Jiujialu Formation /
- aluminous rock series /
- enrichment mechanism /
- geoscience
-
-
图 1 黔西北金沙地区铝土矿沉积分布[23]
Figure 1.
图 3 黔西北金沙地区含铝岩系稀土富集机制[35]
Figure 3.
表 1 黔西北金沙地区含铝岩系及底板岩石化学分析数据
Table 1. Chemical analysis data of aluminous rock series and basement rocks in Jinsha Area, northwest Guizhou Province
样品编号 岩性 SiO2 Al2O3 Fe2O3 FeO Cu Sr Ba V Zr U Th Sr/Cu V/Zr Sr/Ba Tu/U /×10-2 /×10-2 /×10-2 /×10-2 /×10-6 /×10-6 /×10-6 /×10-6 /×10-6 /×10-6 /×10-6 PM101-H1 灰色微晶灰岩 25.69 1.99 1.01 0.56 4.32 92.6 33.2 18.1 36.6 0.84 2.50 21.44 0.49 2.79 2.98 PM101-H2 土状铝土矿 40.50 24.03 13.3 0.45 117.00 203.0 236.0 120.0 113.0 9.97 22.80 1.74 1.06 0.86 2.29 PM101-H3 土状铝土矿 45.30 32.61 2.11 0.14 20.40 710.0 374.0 139.0 128.0 4.81 28.30 34.80 1.09 1.90 5.88 PM101-H4 鲕粒状铝土矿 33.50 46.65 0.55 0.38 9.63 133.0 167.0 248.0 666.0 9.43 53.20 13.81 0.37 0.80 5.64 TC101-H1 灰色微晶灰岩 58.94 12.97 5.64 8.38 14.10 62.5 94.7 90.0 654.0 3.84 14.20 4.43 0.14 0.66 3.70 TC101-H2 土状铝土矿 41.80 25.55 8.30 5.57 45.60 285.0 254.0 156.0 243.0 7.07 29.00 6.25 0.64 1.12 4.10 TC101-H3 土状铝土矿 45.20 34.06 1.59 0.91 63.60 521.0 300.0 163.0 144.0 5.60 28.40 8.19 1.13 1.74 5.07 TC101-H4 鲕粒状铝土矿 26.10 52.92 1.56 0.49 8.60 108.0 87.4 163.0 715.0 10.90 51.80 12.56 0.23 1.24 4.75 TC101-H5 鲕粒状铝土矿 32.80 40.14 4.91 0.40 16.60 74.1 354.0 349.0 950.0 11.10 75.20 4.46 0.37 0.21 6.77 PM102-H1 灰色微晶灰岩 22.03 7.49 1.89 0.18 16.30 112.0 217.0 54.7 55.1 3.37 5.73 6.87 0.99 0.52 1.70 PM102-H3 土状铝土矿 44.40 34.07 3.95 0.14 25.40 517.0 557.0 143.0 132.0 3.42 27.80 20.35 1.08 0.93 8.13 PM102-H5 鲕粒状铝土矿 61.80 16.94 4.08 2.25 8.17 198.0 338.0 93.2 231.0 4.23 20.30 24.24 0.40 0.59 4.80 PM102-H6 鲕粒状铝土矿 39.20 29.12 4.04 2.08 31.10 7 420.0 1 610.0 154.0 305.0 11.20 33.70 238.59 0.50 4.61 3.01 ZK01-H1 灰色微晶灰岩 10.26 2.49 2.46 1.99 2.45 196.0 43.6 34.9 83.6 2.07 3.61 80.00 0.42 4.50 1.74 ZK01-H2 土状铝土矿 47.30 16.46 2.45 19.44 70.90 1 100.0 129.0 116.0 134.0 6.74 39.20 15.52 0.87 8.53 5.82 ZK01-H3 土状铝土矿 27.50 8.57 14.60 27.94 78.70 659.0 35.9 108.0 127.0 3.05 15.50 8.37 0.85 18.36 5.08 ZK01-H4 土状铝土矿 46.20 29.75 2.32 3.32 23.00 441.0 294.0 140.0 132.0 3.66 24.00 19.17 1.06 1.50 6.56 ZK01-H5 鲕粒状铝土矿 38.40 41.16 1.75 0.32 9.92 154.0 258.0 174.0 315.0 4.19 33.70 15.52 0.55 0.60 8.04 ZK01-H6 鲕粒状铝土矿 32.30 43.79 2.04 0.64 4.76 82.5 185.0 242.0 611.0 6.20 30.50 17.33 0.40 0.45 4.92 表 2 黔西北金沙地区含铝岩系及底板稀土元素含量 单位:g/t
Table 2. Content of rare earth elements in the aluminous rock series and the floor of Jinsha Area in northwest Guizhou
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE ΣLREE ΣHREE PM101-H1 6.17 12.9 1.80 7.98 1.36 0.27 1.44 0.29 1.23 0.38 0.68 0.14 0.75 0.15 6.42 41.96 30.48 11.48 PM101-H9 75.60 147.0 17.80 79.90 17.50 2.89 15.20 1.79 6.76 1.71 3.27 0.68 3.48 0.69 24.80 422.17 340.69 81.48 PM101-H10 290.00 592.0 82.60 322.00 41.40 6.97 37.20 6.05 24.70 5.83 10.80 2.40 11.20 2.24 77.00 1 543.70 1 334.97 208.72 PM101-H11 25.80 44.9 4.78 17.40 2.74 0.65 3.10 0.67 3.42 1.01 2.26 0.59 3.17 0.62 18.00 156.31 96.27 60.04 TC101-H1 36.90 58.0 6.61 22.60 2.49 0.41 2.76 0.50 2.28 0.68 1.53 0.39 2.13 0.41 11.10 149.00 127.00 21.78 TC101-H5 95.80 187.0 22.00 92.40 15.20 2.61 13.90 2.33 9.93 2.61 4.82 1.07 6.07 1.07 42.40 525.41 415.01 110.40 TC101-H6 128.00 228.0 25.20 93.80 17.40 3.37 16.40 2.62 10.50 2.19 3.91 0.75 3.61 0.67 27.60 604.32 495.77 108.55 TC101-H8 15.90 26.6 2.93 11.10 1.95 0.46 2.43 0.61 3.56 1.20 2.58 0.70 3.73 0.77 19.50 116.42 58.94 57.48 TC101-H9 8.10 15.3 1.90 8.11 2.04 0.52 2.71 0.79 4.62 1.57 3.20 0.82 4.52 0.84 24.30 108.14 35.97 72.17 PM102-H1 14.50 20.3 2.43 9.35 1.60 0.35 1.56 0.29 1.25 0.34 0.71 0.20 0.87 0.18 6.13 60.06 48.53 11.53 PM102-H3 315.00 318.0 50.30 207.00 22.60 3.95 19.20 2.27 7.31 1.50 2.84 0.51 2.90 0.54 18.70 1 002.60 916.85 85.77 PM102-H5 57.00 117.0 13.90 55.90 10.30 1.88 11.50 1.75 7.93 2.59 4.09 1.08 5.14 0.97 32.70 341.03 255.98 85.05 PM102-H6 226.00 443.0 47.50 225.00 41.90 11.20 64.70 14.40 60.40 14.70 24.00 5.18 24.20 3.52 206.00 1 441.10 994.60 446.50 ZK01-H1 10.40 24.2 2.78 10.00 2.19 0.52 2.40 0.48 3.15 0.70 1.58 0.27 1.94 0.31 18.50 79.42 50.09 29.33 ZK01-H4 146.00 414.0 51.80 304.00 78.80 12.80 42.80 5.82 33.40 6.32 14.20 1.90 11.00 1.57 129.00 1 369.40 1 007.4 362.01 ZK01-H5 138.00 460.0 73.40 454.00 72.90 11.80 42.20 5.64 29.20 5.69 13.70 1.69 9.30 1.23 83.80 1 510.60 1 210.10 300.45 ZK01-H6 200.00 433.0 53.70 223.00 29.50 4.03 17.30 2.20 10.40 1.82 4.52 0.51 3.53 0.58 25.70 1 149.80 943.23 206.56 ZK01-H8 31.30 42.9 4.35 12.00 2.02 0.54 2.28 0.52 2.52 0.67 1.74 0.37 2.33 0.31 12.80 290.65 93.11 197.54 ZK01-H9 59.10 131.0 14.00 57.80 8.14 1.41 5.50 1.00 7.66 1.92 4.64 0.82 4.99 0.73 30.00 570.71 271.45 299.26 -
[1] 周政,熊文良,张丽军,等. 四川某低品位稀土尾矿回收稀土实验研究[J]. 矿产综合利用, 2023(4):66-70.ZHOU Z, XIONG W L, ZHANG L J, et al. Experimental study on the recovery of rare earth from a low grade rare earth tailings in Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023(4):66-70. doi: 10.3969/j.issn.1000-6532.2023.04.010
ZHOU Z, XIONG W L, ZHANG L J, et al. Experimental study on the recovery of rare earth from a low grade rare earth tailings in Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023(4):66-70. doi: 10.3969/j.issn.1000-6532.2023.04.010
[2] 陈昆峰,胡家乐,张一波,等. 稀土晶体材料研发现状与未来展望[J]. 无机盐工业, 2020, 52(3):11-16.CHEN K F, HU J L, ZHANG Y B, et al. Current R&D status and future trends of rare earth crystal materials[J]. Inorganic Chemicals Industry, 2020, 52(3):11-16. doi: 10.11962/1006-4990.2020-0035
CHEN K F, HU J L, ZHANG Y B, et al. Current R&D status and future trends of rare earth crystal materials[J]. Inorganic Chemicals Industry, 2020, 52(3):11-16. doi: 10.11962/1006-4990.2020-0035
[3] Office of the Secretary,Interior. 2018. Final List of Critical Minerals 2018[EB/OL]. [2018-05-18].
[4] Australian Government, Department of Industry, Innovation and Science, Australian Trade and Investment Commission.2019. Australias Critical Minerals Strategy 2019[R]. Australian: Australian Government, Department of Industry, Innovationand Science, Australian Trade and Investment Commission.
[5] European Commission.Study on the EU's list of Critical Raw Materials (2020) Final Report[R]. Brussels: European Commission, 2020.
[6] CHEN Q S, ZHANG Y F, XING J Y, et al. Methods of Strategic Mineral Resources Determination in China and Abroad[J]. Acta Geoscientica Sinica, 2021, 42(2):137-144.
[7] 李超,舒荣波,程蓉,等. 不同深度离子型稀土矿连续浸出实验[J]. 矿产综合利用, 2023(4):78-82.LI C, SHU R B, CHENG R, et al. Continuous leaching test of ion-type rare earth ore at different depths[J]. Multipurpose Utilization of Mineral Resources, 2023(4):78-82. doi: 10.3969/j.issn.1000-6532.2023.04.012
LI C, SHU R B, CHENG R, et al. Continuous leaching test of ion-type rare earth ore at different depths[J]. Multipurpose Utilization of Mineral Resources, 2023(4):78-82. doi: 10.3969/j.issn.1000-6532.2023.04.012
[8] US Geological Survey. Mineral commodity summaries. Reston: US Geological Survey,2010,128-129.
[9] 张博,宁阳坤,曹飞,等.世界稀土资源现状[J].矿产综合利用,2018 (4):23-25.ZHANG B, NING Y K, CAO F,et al. Current situation of worldwide rare earth resources[J]. Multipurpose Utilization of Mineral Resources,2014 (3):35-37.
ZHANG B, NING Y K, CAO F,et al. Current situation of worldwide rare earth resources[J]. Multipurpose Utilization of Mineral Resources,2014 (3):35-37.
[10] 张苏江,张立伟,张彦文,等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1):9-16.ZHANG S J, ZHANG L W, ZHANG Y W, et al. Summarize on rare earth mineral resources and their distribution at home and abroad[J]. Inorganic Chemicals Industry, 2020, 52(1):9-16. doi: 10.11962/1006-4990.2019-0578
ZHANG S J, ZHANG L W, ZHANG Y W, et al. Summarize on rare earth mineral resources and their distribution at home and abroad[J]. Inorganic Chemicals Industry, 2020, 52(1):9-16. doi: 10.11962/1006-4990.2019-0578
[11] GUPTA C K, KRISHNAMURTHY N. Extractive metallurgy of rare earths[M] Florida:CRC Press, 2005.
[12] 马少兵,裴秋明,王亮,等. 内蒙古喀喇沁旗大西沟萤石矿床成因:来自稀土元素、流体包裹体和H-O同位素的制约[J]. 西北地质, 2024, 57(4):50-65.MA S B, PEI Q M, WANG L, et al. Genesis of the Daxigou fluorite deposit, Harqin Banner, Inner Mongolia, China: Constraints fromrare earth elements, fluid inclusions and H-O isotopes[J]. Northwestern Geology, 2024, 57(4):50-65. doi: 10.12401/j.nwg.2024049
MA S B, PEI Q M, WANG L, et al. Genesis of the Daxigou fluorite deposit, Harqin Banner, Inner Mongolia, China: Constraints fromrare earth elements, fluid inclusions and H-O isotopes[J]. Northwestern Geology, 2024, 57(4):50-65. doi: 10.12401/j.nwg.2024049
[13] 谢志豪,何东升,刘爽,等. 贵州织金某含稀土磷矿工艺矿物学研究[J]. 矿产综合利用, 2020(6):135-141.XIE Z H, HE D S, LIU S, et al. Study on process mineralogy of a rare earth-bearing phosphate ore in Zhijin,Guizhou[J]. Multipurpose Utilization of Mineral Resources, 2020(6):135-141. doi: 10.3969/j.issn.1000-6532.2020.06.023
XIE Z H, HE D S, LIU S, et al. Study on process mineralogy of a rare earth-bearing phosphate ore in Zhijin,Guizhou[J]. Multipurpose Utilization of Mineral Resources, 2020(6):135-141. doi: 10.3969/j.issn.1000-6532.2020.06.023
[14] 龙克树,付勇,龙珍,等.全球铝土矿中稀土和钪的资源潜力分析[J].地质学报,2019, 93(6): 1279-1295.LONG K S, FU Y, LONG Z, et al. Resource potential analysis of REO and Sc in global bauxite[J]. Acta Geologica Sinica,2019, 93(6):1279-1295.
LONG K S, FU Y, LONG Z, et al. Resource potential analysis of REO and Sc in global bauxite[J]. Acta Geologica Sinica,2019, 93(6):1279-1295.
[15] 黄智龙,金中国,向礼贤,等. 黔北务正道铝土矿成矿理论及预测[M].北京:科学出版社,2014:102-121.HUANG Z L, JIN Z G, XIANG L X, et al. The ore-forming theory and prediction of the Wuzhengdao bauxite deposit in northern Guizhou[M].Beijing: Science Press, 2014: 102-121.
HUANG Z L, JIN Z G, XIANG L X, et al. The ore-forming theory and prediction of the Wuzhengdao bauxite deposit in northern Guizhou[M].Beijing: Science Press, 2014: 102-121.
[16] NIMILA D, NADEERA B, et al. Ilankoon et al. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology,mineralogy and global production[J]. Ore Geology Reviews, 2020, 122:2-17.
[17] ZHU K Y, SU H M, et al. Mineralogical control and characteristics of rare earth elements occurrencein Carboniferous bauxites from western Henan Province, north China: A XRD,S EM-EDS and LA-ICP-MS analysis[J]. Ore Geology Reviews, 2019, 114:1-22.
[18] 李中明,赵建敏,冯辉,等. 河南省郁山古风化壳型稀土矿层的首次发现及意义[J]. 矿产地质, 2007, 2(2):177-180.LI Z M, ZHAO J M, FENG H, et al. First discovery of palaeo-weathering crust type REE deposit in Yushan area of Henan province and its significance[J]. Mineral Resources and Geology, 2007, 2(2):177-180.
LI Z M, ZHAO J M, FENG H, et al. First discovery of palaeo-weathering crust type REE deposit in Yushan area of Henan province and its significance[J]. Mineral Resources and Geology, 2007, 2(2):177-180.
[19] 黄苑龄,谷静,张杰,等. 黔北务-正-道铝土矿中稀土元素赋存状态[J]. 矿物学报, 2021, 41(4/5):454-459.HUANG Y L, GU J, ZHANG J, et al. Study on the occurrence state of rare earth elements in bauxite deposits in the Wuchuan-Zheng′an-Daozhen area, northern Guizhou, China[J]. Acta Mineralogica Sinica, 2021, 41(4/5):454-459.
HUANG Y L, GU J, ZHANG J, et al. Study on the occurrence state of rare earth elements in bauxite deposits in the Wuchuan-Zheng′an-Daozhen area, northern Guizhou, China[J]. Acta Mineralogica Sinica, 2021, 41(4/5):454-459.
[20] 武国辉,金中国,鲍淼,等.黔北务正道铝土矿成矿规律探讨[J].地质与勘探,2008,44(6):31-35.WU G H, JIN Z G, BAO M, et al. Discussion on the mineralization laws of Wuzhengdao bauxite deposit in Northern Guizhou[J]. Geology and Exploration,44(6):31-35.
WU G H, JIN Z G, BAO M, et al. Discussion on the mineralization laws of Wuzhengdao bauxite deposit in Northern Guizhou[J]. Geology and Exploration,44(6):31-35.
[21] 叶霖,潘自平,程曾涛. 贵州铝土矿中伴生元素综合利用前景[J]. 矿物学报, 2007(4):388-392.YE L, PAN Z P, CHENG Z T. The prospects for the comprehensive utilization of associated elements in Guizhou's bauxite deposits[J]. Acta Minerallogica, 2007(4):388-392. doi: 10.3321/j.issn:1000-4734.2007.03.023
YE L, PAN Z P, CHENG Z T. The prospects for the comprehensive utilization of associated elements in Guizhou's bauxite deposits[J]. Acta Minerallogica, 2007(4):388-392. doi: 10.3321/j.issn:1000-4734.2007.03.023
[22] 叶霖,程曾涛,潘自平. 贵州修文小山坝铝土矿中稀土元素地球化学特征[J]. 矿物岩石地球化学通报, 2007(3):228-233.YE L, CHENG Z T, PAN Z P. The REE Geochemical characteristics of the Xiaoshanba bauxite deposit,Guizhou[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2007(3):228-233. doi: 10.3969/j.issn.1007-2802.2007.03.006
YE L, CHENG Z T, PAN Z P. The REE Geochemical characteristics of the Xiaoshanba bauxite deposit,Guizhou[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2007(3):228-233. doi: 10.3969/j.issn.1007-2802.2007.03.006
[23] 刘平,廖友常. 黔西北-渝南铝土矿含矿岩系时代探讨[J].中国地质,2012,39(3):661-682.LIU P, LIAO Y C. A tentative discussion on the age of banxite-bearing rock series in central Guizhou-southern Chongqing Area[J]. Geology in China,2010,39(3): 661- 682.
LIU P, LIAO Y C. A tentative discussion on the age of banxite-bearing rock series in central Guizhou-southern Chongqing Area[J]. Geology in China,2010,39(3): 661- 682.
[24] 刘平,廖友常. 黔西北-渝南沉积型铝土矿区域成矿模式及找矿模型[J]. 中国地质, 2014, 41(6):2063-2082.LIU P, LIAO Y C. Regional metallogenic model and prospecting criteria of sedimentary bauxite deposits in central Guizhou-Southern Chongqing Region[J]. Geology in China, 2014, 41(6):2063-2082. doi: 10.3969/j.issn.1000-3657.2014.06.020
LIU P, LIAO Y C. Regional metallogenic model and prospecting criteria of sedimentary bauxite deposits in central Guizhou-Southern Chongqing Region[J]. Geology in China, 2014, 41(6):2063-2082. doi: 10.3969/j.issn.1000-3657.2014.06.020
[25] 刘平. 黔北务-正-道地区铝土矿地质概要[J]. 地质与勘探, 2007, 43(5):29-33.LIU P. Bauxite geology in the Wuchuan−Zhen'an−Daozhen area,northern Guizhou[J]. Geology and Prospecting, 2007, 43(5):29-33. doi: 10.3969/j.issn.0495-5331.2007.05.006
LIU P. Bauxite geology in the Wuchuan−Zhen'an−Daozhen area,northern Guizhou[J]. Geology and Prospecting, 2007, 43(5):29-33. doi: 10.3969/j.issn.0495-5331.2007.05.006
[26] 刘平,廖友常. 试论遵义高铁铝土矿与低铁铝土矿的分带性及形成机制[J]. 中国地质, 2013, 40(3):949-966.LIU P,LIAO Y C. The zonation and genetic mechanism of Zunyi high and low − ferrous bauxites[J]. Geology in China, 2013, 40(3):949-966. doi: 10.3969/j.issn.1000-3657.2013.03.025
LIU P,LIAO Y C. The zonation and genetic mechanism of Zunyi high and low − ferrous bauxites[J]. Geology in China, 2013, 40(3):949-966. doi: 10.3969/j.issn.1000-3657.2013.03.025
[27] 刘平,廖友常. 黔中-渝南铝土矿含矿岩系时代探讨[J].中国地质,2012,39(3):661-682.LIU P, LIAO Y C. A tentative discussion on the age of banxite-bearing rock series in central Guizhou—Southern Chongqing Area[J]. Geology in China,2010,39(3): 661- 682.
LIU P, LIAO Y C. A tentative discussion on the age of banxite-bearing rock series in central Guizhou—Southern Chongqing Area[J]. Geology in China,2010,39(3): 661- 682.
[28] Maksimovic Z,Panto G. Contribution to the reochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece[J]. Geoderma, 1991, 51(1-4):93-109. doi: 10.1016/0016-7061(91)90067-4
[29] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用—以江汉盆地潜江组为例[J]. 石油实验地质, 2007(3):307-310+314.LIU G, ZHOU D S. Application of microelements analysis in identifying sedimentary environment- taking Qianjiang formation in the Jianghan basin as an example[J]. Petroleum Geology &Experiment, 2007(3):307-310+314. doi: 10.3969/j.issn.1001-6112.2007.03.016
LIU G, ZHOU D S. Application of microelements analysis in identifying sedimentary environment- taking Qianjiang formation in the Jianghan basin as an example[J]. Petroleum Geology &Experiment, 2007(3):307-310+314. doi: 10.3969/j.issn.1001-6112.2007.03.016
[30] 郑荣才,文华国,高红灿,等. 酒西盆地青西凹陷下沟组湖相喷流岩稀土元素地球化学特征[J]. 矿物岩石, 2007, 26(4):41-47.ZHENG R C, WEN H G, GAO H C, et al. Geochemical characteristics of rare earth elements in lacustrine flow rocks of the Xiaogou formation in the Qingxi Depression of the Jiusi Basin[J]. J M INE RAL PET ROL, 2007, 26(4):41-47.
ZHENG R C, WEN H G, GAO H C, et al. Geochemical characteristics of rare earth elements in lacustrine flow rocks of the Xiaogou formation in the Qingxi Depression of the Jiusi Basin[J]. J M INE RAL PET ROL, 2007, 26(4):41-47.
[31] Wignall P B,Twitchett R J. Oceanic anoxia and the End Permian mass extinction[J].Science, 1996, 272: 1155-1158.
[32] Kimura H,Watanabe Y, Oceanic anoxia at the Precambrian Cambrian boundary[J]. Geology, 2001, 29: 995-998.
[33] 谷静,黄智龙,金中国. 黔北务-正-道地区新木-宴溪铝土矿含矿岩系底部稀土元素富集机制[J]. 矿物学报, 2021, 41(4):413-426.GU J, HUANG Z L, JIN Z G. The REE enrichment mechanism in the bottom layer of ore-bearing rocks of the Xinmu-Yanxi bauxite deposit in the Northern Guizhou,China[J]. Acta Mineralogica Sinica, 2021, 41(4):413-426.
GU J, HUANG Z L, JIN Z G. The REE enrichment mechanism in the bottom layer of ore-bearing rocks of the Xinmu-Yanxi bauxite deposit in the Northern Guizhou,China[J]. Acta Mineralogica Sinica, 2021, 41(4):413-426.
[34] MONGELLI G. Ce-anomalies in the textura components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)[J]. Chemical Geology, 1997, 140(14):69-79.
[35] 唐波,付勇,龙克树,等. 中国铝土矿含铝岩系伴生稀土资源分布特征及富集机制[J]. 地质学报, 2284, 95(8):2284-2305.TANG B, FU Y, LONG K S,et al. Distribution characteristics and enrichment mechanism of associated rare earth resources in aluminum-bearing rock series in bauxite deposits of China[J]. Acta Geologica Sinica, 95(8):, 2284, 95(8):2284-2305.
TANG B, FU Y, LONG K S,et al. Distribution characteristics and enrichment mechanism of associated rare earth resources in aluminum-bearing rock series in bauxite deposits of China[J]. Acta Geologica Sinica, 95(8):, 2284, 95(8):2284-2305.
-