GENESIS AND METALLOGENIC POTENTIAL OF THE PASIR ELA GOLD DEPOSIT IN CIKOTOK OREFIELD, INDONESIA
-
摘要:
印度尼西亚Cikotok矿区帕瑟埃拉金矿位于巽他-班达岛弧的中部Bayah穹隆中,宏观上具有找到大型矿床的地质前提.成矿围岩为始新世末-中新世早期的安山岩,围岩蚀变强烈,分带性明显,金矿脉具有多条近平行产出特征.矿床有4个成矿阶段:石英-蒙脱石-绿泥石阶段,石英-绢云母-黄铁矿阶段,石英-冰长石-硫化物-含锰矿物阶段,块状石英阶段.矿床成因类型为大洋岛弧型低硫浅成低温热液型,细分类型为"Pongkor型"条带状低硫含金石英锰氧化物矿脉型金矿,其浅表部为热泉型金矿.矿床的深部找矿潜力大,具有大型金矿的成矿潜力.
Abstract:The Pasir Ela gold deposit in the Cikotok orefield of Indonesia, tectonically located in Bayah dome in the middle of Sunda-Banda island arc, has the macroscopic geological precondition for finding large deposits. The ore-forming wall rock is the late Eocene-early Miocene andesite, with strong alteration and obvious zonation, in which several gold veins are occurred nearly parallel to one another. The deposit experienced 4 metallogenic stages, including quartz-smectite-chlorite, quartz-sericite-pyrite, quartz-adularia-sulfide-manganese bearing mineral and massive quartz. The gold deposit is genetically low sulfur epithermal type of oceanic island arc, with the subdivision of Pongkor-type banded low sulfur gold-bearing quartz-manganese oxide vein, and the hot spring type in the superficial part. It is concluded that the deposit has great deep prospecting potential and metallogenic potential of large gold deposits.
-
Key words:
- Bayah dome /
- low sulfur epithermal type /
- Pongkor type /
- hot spring-type gold deposit /
- Indonesia
-
-
[1] Othman D B, White W M, Patchett J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth and Planetary Science Letters, 1989, 94(1/2): 1-21. http://www.sciencedirect.com/science/article/pii/0012821X89900794
[2] 王承书. 东南亚的活动俯冲和碰撞[J]. 沉积与特提斯地质, 2002, 22(1): 92-112. doi: 10.3969/j.issn.1009-3850.2002.01.016
Wang C S. Active subduction and collision in Southeast Asia[J]. Sedimentary Geology and Tethyan Geology, 2002, 22(1): 92-112. doi: 10.3969/j.issn.1009-3850.2002.01.016
[3] Kusnama D S, Panggabean H. The tertiary geology of Bayah Area in relation to the evolution of west Java[J]. AAPG Bulletin, 1994, 78(3): 21-24.
[4] 杨牧, 彭省临, 邵拥军. 东南亚大型-超大型浅成低温热液金矿床成矿地质特征研究[J]. 大地构造与成矿学, 2000, 24(3): 224-230. doi: 10.3969/j.issn.1001-1552.2000.03.005
Yang M, Peng S L, Shao Y J. A study on the geological characters of giant-supergiant epithermal gold deposits in Southeast Asia[J]. Geotectonica et Metallogenia, 2000, 24(3): 224-230. doi: 10.3969/j.issn.1001-1552.2000.03.005
[5] 刘书生, 杨永飞, 郭林楠, 等. 东南亚大地构造特征与成矿作用[J]. 中国地质, 2018, 45(5): 863-889. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805002.htm
Liu S S, Yang Y F, Guo L N, et al. Tectonic characteristics and metallogeny in Southeast Asia[J]. Geology in China, 2018, 45(5): 863-889. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805002.htm
[6] 沙德铭, 苑丽华. 浅成低温热液型金矿特点、分布和找矿前景[J]. 地质与资源, 2003, 12(2): 115-124. doi: 10.3969/j.issn.1671-1947.2003.02.010 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9694.shtml
Sha D M, Yuan L H. The characteristics, distribution and prospect of epithermal gold deposits[J]. Geology and Resources, 2003, 12(2): 115-124. doi: 10.3969/j.issn.1671-1947.2003.02.010 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9694.shtml
[7] 江思宏, 聂凤军, 张义, 等. 浅成低温热液型金矿床研究最新进展[J]. 地学前缘, 2004, 11(2): 401-411. doi: 10.3321/j.issn:1005-2321.2004.02.010
Jiang S H, Nie F J, Zhang Y, et al. The latest advances in the research of epithermal deposits[J]. Earth Science Frontiers, 2004, 11(2): 401-411. doi: 10.3321/j.issn:1005-2321.2004.02.010
[8] Marcoux E, Milési J P. Epithermal gold deposits in West Java, Indonesia: Geology, age and crustal source[J]. Journal of Geochemical Exploration, 1994, 50(1/3): 393-408.
[9] Milési J P, Marcoux E, Sitorus T, et al. Pongkor (West Java, Indonesia): A Pliocene supergene-enriched epithermal Au-Ag-(Mn) deposit[J]. Mineralium Deposita, 1999, 34(2): 131-149. doi: 10.1007/s001260050191
[10] Basuki A, Sumanagara D A, Sinambela D. The Gunung Pongkor gold-silver deposit, West Java, Indonesia[J]. Journal of Geochemical Exploration, 1994, 50(1/2/3): 371-391. http://www.sciencedirect.com/science/article/pii/0375674294900329
[11] Imai A, Motomura Y, Watanabe K. Characteristics of gold mineralization at the Ciurug vein, Pongkor gold-silver deposit, West Java, Indonesia[J]. Resource Geology, 2005, 55(3): 225-238. doi: 10.1111/j.1751-3928.2005.tb00244.x
[12] Imai A, Watanabe K. Origin of ore-forming fluids responsible for gold mineralization of the Pongkor Au-Ag deposit, West Java, Indonesia: Evidence from mineralogic, fluid inclusion microthermometry and stable isotope study of the Ciurug-Cikoret veins[J]. Resource Geology, 2007, 57(2): 136-148. doi: 10.1111/j.1751-3928.2007.00013.x
[13] Leroy J L, Hube D, Marcoux E. Episodic deposition of Mn minerals in Cockade breccia structures in three low-sulfidation epithermal deposits: A mineral stratigraphy and fluid-inclusion approach[J]. The Canadian Mineralogist, 2000, 38(5): 1125-1136. doi: 10.2113/gscanmin.38.5.1125
[14] Wagner T, Williams-Jones A E, Boyce A J. Stable isotope-based modeling of the origin and genesis of an unusual Au-Ag-Sn-W epithermal system at Cirotan, Indonesia[J]. Chemical Geology, 2005, 219: 237-260. doi: 10.1016/j.chemgeo.2005.02.006
[15] Marcoux E, Milesi J P, Sohearto S, et al. Noteworthy mineralogy of the Au-Ag-Sn-W(Bi) epithermal ore deposit of Cirotan, West Java, Indonesia[J]. The Canadian Mineralogist, 1993, 31(3): 727-744. http://ci.nii.ac.jp/naid/10010626476
[16] 舟山. 印度尼西亚爪哇西部Cirotan浅成热液银金矿脉的成矿多期演化[J]. 国外铀金地质, 1994, 11(4): 318. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD199404006.htm
Zhou S. Multi-stage evolution of Epithermal silver-gold veins in Cirotan, Western Java, Indonesia[J]. Uranium Gold Geology Abroad, 1994, 11(4): 318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD199404006.htm
[17] 徐晓璐, 高建国, 张利军. 印度尼西亚西爪哇内格拉萨金矿区古成矿流体研究[J]. 科学技术与工程, 2012, 12(9): 2004-2007, 2013. doi: 10.3969/j.issn.1671-1815.2012.09.004
Xu X L, Gao J G, Zhang L J. The ancient ore-forming fluids study of Neglasari mine in West Java, Indonesia[J]. Science Technology and Engineering, 2012, 12(9): 2004-2007, 2013. doi: 10.3969/j.issn.1671-1815.2012.09.004
[18] 侯宗林. 我国热泉型金矿成矿地质背景与找矿前景[J]. 地质与勘探, 1992, 28(3): 1-6, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199203000.htm
Hou Z L. Geological setting and exploration prospect of hot spring type gold deposits in China[J]. Geology and Exploration, 1992, 28(3): 1-6, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199203000.htm
[19] 芮宗瑶, 沈建忠. 热泉型矿床研究进展[J]. 矿物岩石地球化学通讯, 1992(3): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199203009.htm
Rui Z Y, Shen J Z. Research progress of hot spring deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1992(3): 147-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199203009.htm
[20] 黄亚南. 闽中太华山热泉型金矿成矿背景及地质特征[J]. 地质与勘探, 1999, 35(6): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199906009.htm
Huang Y N. Metallogenic background and geological characteristics of the Taihuashan hot spring gold deposit in central Fujian[J]. Geology and Prospecting, 1999, 35(6): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199906009.htm
[21] Rosana M F, Matsueda H. Cikidang hydrothermal gold deposit in Western Java, Indonesia[J]. Resource Geology, 2002, 52(4): 341-352. doi: 10.1111/j.1751-3928.2002.tb00144.x
-