页岩组分对五峰-龙马溪组与牛蹄塘组页岩孔隙发育差异的影响——以渝东南焦页1井与湘西北慈页1井为例

谢志涛, 胡海燕, 袁浩莆, 刘冀蓬, 王涛, 刘立航. 页岩组分对五峰-龙马溪组与牛蹄塘组页岩孔隙发育差异的影响——以渝东南焦页1井与湘西北慈页1井为例[J]. 地质与资源, 2021, 30(2): 143-152. doi: 10.13686/j.cnki.dzyzy.2021.02.005
引用本文: 谢志涛, 胡海燕, 袁浩莆, 刘冀蓬, 王涛, 刘立航. 页岩组分对五峰-龙马溪组与牛蹄塘组页岩孔隙发育差异的影响——以渝东南焦页1井与湘西北慈页1井为例[J]. 地质与资源, 2021, 30(2): 143-152. doi: 10.13686/j.cnki.dzyzy.2021.02.005
XIE Zhi-tao, HU Hai-yan, YUAN Hao-pu, LIU Ji-peng, WANG Tao, LIU Li-hang. INFLUENCE OF SHALE COMPONENTS ON THE PORE DEVELOPMENT DIFFERENCES BETWEEN WUFENG-LONGMAXI FORMATION AND NIUTITANG FORMATION: A Case Study of JY-1 Well in Southeast Chongqing and CY-1 Well in Northwest Hunan[J]. Geology and Resources, 2021, 30(2): 143-152. doi: 10.13686/j.cnki.dzyzy.2021.02.005
Citation: XIE Zhi-tao, HU Hai-yan, YUAN Hao-pu, LIU Ji-peng, WANG Tao, LIU Li-hang. INFLUENCE OF SHALE COMPONENTS ON THE PORE DEVELOPMENT DIFFERENCES BETWEEN WUFENG-LONGMAXI FORMATION AND NIUTITANG FORMATION: A Case Study of JY-1 Well in Southeast Chongqing and CY-1 Well in Northwest Hunan[J]. Geology and Resources, 2021, 30(2): 143-152. doi: 10.13686/j.cnki.dzyzy.2021.02.005

页岩组分对五峰-龙马溪组与牛蹄塘组页岩孔隙发育差异的影响——以渝东南焦页1井与湘西北慈页1井为例

  • 基金项目:
    国家自然科学基金项目"川东龙马溪组页岩气成藏机理及其主控因素"(编号41472122);中国地质调查局项目"南方页岩气赋存与保存机理"(12120114046901);湖北省教育厅科技创新团队项目"页岩气区域选区评价方法研究"(编号2016ZX05034002-003)
详细信息
    作者简介: 谢志涛(1996-), 男, 硕士研究生, 石油天然气地质学研究方向, 通信地址 湖北省武汉市蔡甸区蔡甸街道大学路111号, E-mail//1531350129@qq.com
    通讯作者: 胡海燕(1977-), 男, 博士, 教授, 博士生导师, 从事石油天然气地质学研究工作, 通信地址 湖北省武汉市蔡甸区蔡甸街道大学路111号, E-mail//hyhucom@163.com
  • 中图分类号: P618.13

INFLUENCE OF SHALE COMPONENTS ON THE PORE DEVELOPMENT DIFFERENCES BETWEEN WUFENG-LONGMAXI FORMATION AND NIUTITANG FORMATION: A Case Study of JY-1 Well in Southeast Chongqing and CY-1 Well in Northwest Hunan

More Information
  • 根据页岩样品不同孔径范围的累计孔体积与累计比表面积,结合焦页1井五峰-龙马溪组与慈页1井牛蹄塘组页岩样品的地球化学参数与岩样各矿物组分百分含量,分析页岩组分对两套地层孔隙发育差异的影响.结果显示,TOC与微孔呈正相关关系,表明有机质微孔对页岩孔隙发育提供了一定的贡献,五峰-龙马溪组页岩较牛蹄塘组更为发育有机质微孔.石英、黄铁矿含量与微孔的正相关关系表明,矿物支撑的原生孔与发育的边缘孔为页岩孔隙发育提供了有利贡献.石英与中孔、大孔的不同相关性表明石英根据其生物成因贡献的石英含量对中孔、大孔的保护程度不一.黄铁矿含量与大孔的正相关关系表明黄铁矿可以根据其含量的多寡为大孔提供一定程度的保护,长石与孔隙的负相关关系表明其对孔隙的支撑作用受到了压实作用、复杂构造的影响而不明显.碳酸盐矿物与孔隙的相关性不明显表示基于其较弱刚性、不稳的化学性质与较低含量未对孔隙发育产生明显影响.五峰-龙马溪组页岩较高的刚性矿物含量对储层矿物粒间孔、边缘孔等微孔与中孔、大孔的发育起到了较牛蹄塘组更为有利的影响.黏土矿物与微孔、中孔的负相关关系表明在较强压实作用下黏土矿物间孔隙易收缩,对储层孔隙发育产生不利影响,表明牛蹄塘组经历的更深历史埋藏对牛蹄塘组黏土矿物间孔隙发育起到了更加不利的影响.

  • 加载中
  • 图 1  研究区地质构造与沉积相图(据文献[6-7, 9])

    Figure 1. 

    图 2  研究区页岩样品全矿物含量

    Figure 2. 

    图 3  目的层页岩样品累计孔体积与累计孔比表面积

    Figure 3. 

    图 4  TOC与目的层样品孔隙的相关性分析

    Figure 4. 

    图 5  刚性矿物组分与目的层样品孔隙及TOC相关性分析

    Figure 5. 

    图 6  黏土矿物含量与目的层样品孔隙相关性分析

    Figure 6. 

  • [1]

    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. doi: 10.11698/PED.2015.06.01

    Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. doi: 10.11698/PED.2015.06.01

    [2]

    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02

    Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02

    [3]

    Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119. doi: 10.1306/10171111052

    [4]

    Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. doi: 10.1306/02141312091

    [5]

    田涛, 付德亮, 杨甫, 等. 米仓山-汉南隆起区牛蹄塘组页岩矿物组分与微观孔隙的关系[J]. 煤炭学报, 2018, 43(S1): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1028.htm

    Tian T, Fu D L, Yang F, et al. Relationship between mineral composition and micro-pores of Niutitang-Formation shale in Micangshan-Hannan Uplift[J]. Journal of China Coal Society, 2018, 43(S1): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1028.htm

    [6]

    周永刚. 中上扬子地块浅部褶皱逆冲格局: 遥感卫星图像处理与解释[D]. 青岛: 中国海洋大学, 2009.

    Zhou Y G. The surface-outcropped structural pattern of folds and thrusts in the Upper-Middle Yangtze block: Processing and interpretation of remote sensing satellite images[J]. Qingdao: Ocean University of China, 2009.

    [7]

    郭旭升. 南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm

    Guo X S. Rules of two-factor enrichment for marine shale gas in southern China-understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm

    [8]

    Hu H Y, Hao F, Lin J F, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S1l) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J]. International Journal of Coal Geology, 2017, 173: 40-50. doi: 10.1016/j.coal.2017.02.004

    [9]

    金之钧, 郑和荣, 蔡立国, 等. 中国前中生代海相烃源岩发育的构造-沉积条件[J]. 沉积学报, 2010, 28(5): 875-883. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005006.htm

    Jin Z J, Zheng R H, Cai L G, et al. Tectonic-sedimentary conditions for development of pre-Mesozoic marine source rocks in China[J]. Acta Sedimentologica Sinica, 2010, 28(5): 875-883. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005006.htm

    [10]

    扈金刚. 湘西北地区富有机质页岩孔隙结构及其演化特征研究[D]. 武汉: 中国地质大学, 2016.

    Hu J G. Study on pore structure and evolution characteristics of organic-rich shale in northwestern Hunan province[J]. Wuhan: China University of Geosciences, 2016. (in Chinese)

    [11]

    郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603003.htm

    Guo X S, Hu D F, Wei Z H, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603003.htm

    [12]

    Hao F, Zou H Y. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J]. Marine and Petroleum Geology, 2013, 44: 1-12. doi: 10.1016/j.marpetgeo.2013.03.005

    [13]

    郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1): 29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm

    Guo T L. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 2016, 23(1): 29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm

    [14]

    戴方尧. 川东-湘西地区龙马溪组与牛蹄塘组页岩孔隙与页岩气赋存机理研究[D]. 武汉: 中国地质大学, 2018.

    Dai F Y. The study of pores characteristics and shale gas occurrence of Longmaxi and Niutitang Formation in East of Sichuan and West of Hunan area[J]. Wuhan: China University of Geosciences, 2018.

    [15]

    Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids (technical report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. doi: 10.1351/pac199466081739

    [16]

    罗超, 刘树根, 罗立志, 等. 贵州丹寨南皋下寒武统牛蹄塘组黑色页岩孔隙结构特征[J]. 地质科技情报, 2014, 33(3): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403014.htm

    Luo C, Liu S G, Luo L Z, et al. Pore structure characteristics of black shale in the lower Cambrian Niutitang Formation of Nangao section in Danzhai, Guizhou province[J]. Geological Science and Technology Information, 2014, 33(3): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403014.htm

    [17]

    陈相霖, 郭天旭, 石砥石, 等. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201905006.htm

    Chen X L, Guo T X, Shi D S, et al. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi[J]. Lithologic Reservoirs, 2019, 31(5): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201905006.htm

    [18]

    冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析: 以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201803006.htm

    Feng X L, Ao W H, Tang X. Characteristics of pore development and its main controlling factors of continental shale gas reservoirs: a case study of Chang 7 member in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 678-692. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201803006.htm

    [19]

    Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D

    [20]

    Kinley T J, Cook L W, Breyer J A, et al. Hydrocarbon potential of the Barnett shale (Mississippian), Delaware Basin, West Texas and southeastern New Mexico[J]. AAPG Bulletin, 2008, 92(8): 967-991. http://www.researchgate.net/publication/249897975_Hydrocarbon_potential_of_the_Barnett_Shale_(Mississippian)_Delaware_Basin_west_Texas_and_southeastern_New_Mexico

    [21]

    Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. http://adsabs.harvard.edu/abs/2009JSedR..79..848L

    [22]

    Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg26/ref26&dbid=16&doi=10.1139%2Fcjes-2013-0200&key=10.1306%2F12190606068

    [23]

    Hickey J J, Henk B. Lithofacies summary of the Mississippian Barnett shale, Mitchell 2 T. P. Sims well, Wise county, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443. http://www.researchgate.net/publication/249897891_Lithofacies_summary_of_the_Mississippian_Barnett_Shale_Mitchell_2_TP_Sims_well_Wise_County_Texas

    [24]

    Thyberg B, Jahren J, Winje T, et al. From mud to shale: rock stiffening by micro-quartz cementation[J]. First Break, 2009, 27(2): 170-173. http://www.researchgate.net/publication/285313182_From_mud_to_shale_Rock_stiffening_by_micro-quartz_cementaton

    [25]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg37/ref37&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F08171111061

  • 加载中

(6)

计量
  • 文章访问数:  1152
  • PDF下载数:  123
  • 施引文献:  0
出版历程
收稿日期:  2020-07-20
修回日期:  2020-11-16
刊出日期:  2021-04-28

目录