ANALYSIS OF SLOPE STABILITY BASED ON ROCK MASS QUALITY GRADE EVALUATION: A case study of Xiahekou-Lagushao road section in Kuandian area of Liaoning Province
-
摘要:
在对岩体质量定性分析及相关指标定量分析的基础上, 将岩体质量分为不同级别. 根据岩体的不同质量等级, 通过岩石力学性质分析了下河口-拉古哨路段边坡的稳定性. 结果表明: 侵入岩组(石英二长岩、石英正长岩)和变质岩组(混合岩)岩体节理对边坡失稳破坏的影响较小; 变质岩组(片麻岩)岩体的风化程度和完整程度降低了边坡的稳定程度. 风化程度、完整程度、结构特征、结构面产状及延伸性是影响边坡稳定性的主要原因, 边坡破坏方式和程度可能出现多种模式.
Abstract:The rock mass quality is divided into different grades on the basis of qualitative analysis of rock mass quality and quantitative analysis of related indexes. According to the different quality grades, the slope stability along Xiahekou-Lagushao road section is analyzed by rock mechanical properties. The results show that the joints of intrusive rock group (quartz monzonite, quartz syenite) and metamorphic rock group (migmatite) have minor influence on the slope instability failure. The weathering and poor integrity of metamorphic rock mass (gneiss) reduce the slope stability. The weathering degree, integrity degree, structural characteristics, occurrence and extensibility of structural planes are the major factors affecting the slope stability, with multiple modes of slope failure and degree.
-
Key words:
- rock mass grade /
- rock mechanics /
- slope stability /
- metamorphic rock group /
- Liaoning Provinc
-
-
表 1 岩体子类的基本质量等级特征一览表
Table 1. Basic quality grade characteristics of rock mass subclasses
岩体
小类岩体子类 点号 风化程度 岩体体积节理数Jv /(条/m2) 岩体完整性指数Kv 完整情况 点荷载强度指数的平均值Is(50) 岩石单轴饱和抗压强度Rc /MPa 坚硬程度 岩体基本质量指标BQ 质量
等级侵入岩组 石英正长岩 YD040 微风化 8 0.607 较完整 4.25 67.51 坚硬岩 454.27 Ⅱ 石英二长岩 YD041 微风化 5 0.692 较完整 3.95 63.94 坚硬岩 464.82 Ⅱ YD042 微风化 7 0.635 较完整 4.86 74.68 坚硬岩 482.79 Ⅱ YD043 中等风化 5 0.692 较完整 5.58 82.89 坚硬岩 521.66 Ⅱ YD044 微风化 12 0.510 较破碎 4.64 72.20 坚硬岩 444.10 Ⅲ 变质岩组 混合岩 YD045 中等风化 5 0.692 较完整 5.01 76.44 坚硬岩 502.32 Ⅱ 片麻岩 YD046 中等风化 14 0.470 较破碎 2.36 43.40 较硬岩 347.71 Ⅳ YD015 全风化 极破碎 极软岩 Ⅴ YD016 全风化 破碎 软岩 Ⅴ YD017 中等风化 4 0.721 较完整 4.12 66.04 坚硬岩 478.36 Ⅱ YD019 微风化 4 0.721 较完整 5.04 76.75 坚硬岩 510.50 Ⅱ YD030 中等风化 14 0.470 较破碎 2.14 40.35 较硬岩 338.55 Ⅳ YD031 微风化 12 0.510 较破碎 1.97 37.93 较硬岩 331.30 Ⅳ 表 2 下河口-拉古哨路段边坡岩体质量分级
Table 2. Rock mass quality grading of the slope along Xiahekou-Lagushao road section
岩性 石英正长岩 石英二长岩 中等风化混合岩 中等风化片麻岩 BQ值 >451 >440 >451 251~350 岩体质量等级 Ⅱ Ⅱ—Ⅲ Ⅱ Ⅳ 表 3 各类岩体力学参数值表
Table 3. Mechanical parameters of rock masses
参数 石英正长岩 石英二长岩 中等风化混合岩 中等风化片麻岩 内聚力c/MPa 0.702 0.693 0.712 0.413 内摩擦角φ/(°) 42.1 37.8 39.5 32.4 -
[1] 王存良. 陕西宝鸡地区黄土工程边坡分类及防治现状[J]. 世界地质, 2019, 38(4): 1111-1119. doi: 10.3969/j.issn.1004-5589.2019.04.022
Wang C L. Classification of loess engineering slopes and present situation of prevention and control in Baoji area, Shaanxi[J]. Global Geology, 2019, 38(4): 1111-1119. doi: 10.3969/j.issn.1004-5589.2019.04.022
[2] 刘雨鑫, 冯玉华. 天峻县苏里乡一社不稳定斜坡危害与防治[J]. 青海国土经略, 2012, 21(3): 43-44. doi: 10.3969/j.issn.1671-8704.2012.03.022
Liu Y X, Feng Y H. Damage and prevention of unstable slope in No. 1 Community of Suli Township, Tianjun County[J]. Management & Strategy of Qinghai, 2012, 21(3): 43-44. (in Chinese) doi: 10.3969/j.issn.1671-8704.2012.03.022
[3] 陈伟楠, 徐明. 沙湾县翠山公园不稳定斜坡地质灾害特征分析[J]. 地下水, 2019, 41(1): 135-138. doi: 10.3969/j.issn.1004-1184.2019.01.048
Chen W N, Xu M. Analysis on geological hazard characteristics of unstable slope in Cuishan Park of Shawan County[J]. Ground Water, 2019, 41(1): 135-138. (in Chinese) doi: 10.3969/j.issn.1004-1184.2019.01.048
[4] 张玉, 杨志双, 张瑛, 等. 本溪南芬铁矿排土场滑坡稳定性研究[J]. 地质与资源, 2008, 17(1): 50-52, 60. doi: 10.3969/j.issn.1671-1947.2008.01.010 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9358.shtml
Zhang Y, Yang Z S, Zhang Y, et al. Study on the stability and landslide control of the dumping ground in Nanfen Iron Mine, Liaoning Province[J]. Geology and Resources, 2008, 17(1): 50-52, 60. doi: 10.3969/j.issn.1671-1947.2008.01.010 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9358.shtml
[5] 鲁宝锋. 图解法与极限平衡法在边坡稳定分析中的应用[J]. 绿色环保建材, 2017, 4(2): 225, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-HBJC201702198.htm
Lu B F. Application of graphic method and limit equilibrium method in slope stability analysis[J]. Green Environmental Protection Building Materials, 2017, 4(2): 225, 227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBJC201702198.htm
[6] 王艳龙, 杜立志, 何赛, 等. 逻辑回归模型在边坡稳定性分析中的应用[J]. 世界地质, 2018, 37(3): 945-951. doi: 10.3969/j.issn.1004-5589.2018.03.027
Wang Y L, Du L Z, He S, et al. Application of logistic regression model in slope stability analysis[J]. Global Geology, 2018, 37(3): 945-951. doi: 10.3969/j.issn.1004-5589.2018.03.027
[7] 曲文峰, 王德中, 张理, 等. 基于RMR岩体质量评价的某边坡稳定性分析[J]. 江西有色金属, 2010, 24(1): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201001005.htm
Qu W F, Wang D Z, Zhang L, et al. Slope stability evaluation based on RMR rock mass quality classification method[J]. Jiangxi Nonferrous Metals, 2010, 24(1): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201001005.htm
[8] 高博, 陈桂虎, 王刚, 等. 辽宁太平湾地区地质灾害特征及其对机动通行能力的影响[J]. 世界地质, 2019, 38(4): 1152-1165. doi: 10.3969/j.issn.1004-5589.2019.04.027
Gao B, Chen G H, Wang G, et al. Characteristics of geological disasters in Taiping Bay district of Liaoning and their impact on motortraffic capacity[J]. Global Geology, 2019, 38(4): 1152-1165. doi: 10.3969/j.issn.1004-5589.2019.04.027
[9] 张国仁, 江淑娥, 韩晓平, 等. 鸭绿江断裂带的主要特征及其研究意义[J]. 地质与资源, 2006, 15(1): 11-19. doi: 10.3969/j.issn.1671-1947.2006.01.002 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9537.shtml
Zhang G R, Jiang S E, Han X P, et al. The main characteristics of Yalujiang fault zone and its significance[J]. Geology and Resources, 2006, 15(1): 11-19. doi: 10.3969/j.issn.1671-1947.2006.01.002 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9537.shtml
[10] 龚放. 工程地质岩组与岩体质量分级在岩石工程中应用对比[J]. 江西建材, 2016, 36(23): 200-206. doi: 10.3969/j.issn.1006-2890.2016.23.173
Gong F. Application comparison of engineering geological rock group and rock mass quality classification in rock engineering[J]. Jiangxi Building Materials, 2016, 36(23): 200-206. (in Chinese) doi: 10.3969/j.issn.1006-2890.2016.23.173
[11] 中华人民共和国住房和城乡建设部. GB/T 50266-2013工程岩体试验方法标准[S]. 北京: 中国计划出版社, 2013: 1-34.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50266-2013 Standard for test methods of engineering rock mass[S]. Beijing: China Planning Press, 2013: 1-34.
[12] 中华人民共和国住房和城乡建设部. GB/T 50218-2014工程岩体分级标准[S]. 北京: 中国计划出版社, 2015: 1-20.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50218-2014 Standard for engineering classification of rock mass[S]. Beijing: China Planning Press, 2015: 1-20.
[13] 安李良, 杨健. RMR法在斯里兰卡KMTC隧洞工程中的应用[J]. 云南水力发电, 2020, 36(6): 25-28. doi: 10.3969/j.issn.1006-3951.2020.06.006
An L L, Yang J. Application of RMR method in KMTC tunnel project in Sri Lanka[J]. Yunnan Water Power, 2020, 36(6): 25-28. doi: 10.3969/j.issn.1006-3951.2020.06.006
[14] 虞金林. BQ分级法在边坡岩体基本质量分级中的应用分析[J]. 江苏建材, 2021, 41(2): 50-53. doi: 10.3969/j.issn.1004-5538.2021.02.016
Yu J L. Application analysis for BQ classification method applicated in basic quality classification of slope rock mass[J]. Jiangsu Building Materials, 2021, 41(2): 50-53. doi: 10.3969/j.issn.1004-5538.2021.02.016
[15] 姜平, 孟伟. 基于岩体质量分级的岩石力学参数研究[J]. 三峡大学学报(自然科学版), 2004, 26(5): 424-427. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200405011.htm
Jiang P, Meng W. Research on rock mechanics parameters of rock quality grade-oriented[J]. Journal of China Three Gorges University (Natural Sciences), 2004, 26(5): 424-427. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200405011.htm
[16] 刘德克, 李克钢. 内聚力和内摩擦角对岩样峰值强度影响规律探讨[J]. 矿产保护与利用, 2015, 35(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201503006.htm
Liu D K, Li K G. The discussion on effect of cohesion and internal frictional angle on the peak strength of rock[J]. Conservation and Utilization of Mineral Resources, 2015, 35(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201503006.htm
[17] 中华人民共和国住房和城乡建设部. GB50330-2013建筑边坡工程技术规范[S]. 北京: 中国建筑工业出版社, 2014: 2-83.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB50330-2013 Technical code for building slope engineering[S]. Beijing: China Architecture & Building Press, 2014: 2-83.
[18] 陈卫忠, 杨建平, 邹喜德, 等. 裂隙岩体宏观力学参数研究[J]. 岩石力学与工程学报, 2008, 27(8): 1569-1575. doi: 10.3321/j.issn:1000-6915.2008.08.005
Chen W Z, Yang J P, Zou X D, et al. Research on macro mechanical parameters of fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1569-1575. doi: 10.3321/j.issn:1000-6915.2008.08.005
[19] 刘飞, 秦胜伍, 乔双双, 等. 基于神经网络模型的斜坡地质灾害易发性评价: 以吉林永吉为例[J]. 世界地质, 2019, 38(4): 1166-1176. doi: 10.3969/j.issn.1004-5589.2019.04.028
Liu F, Qin S W, Qiao S S, et al. Slope geological hazards susceptibility evaluation based on neural network model: A case study from Yongji County of Jilin Province[J]. Global Geology, 2019, 38(4): 1166-1176. doi: 10.3969/j.issn.1004-5589.2019.04.028
[20] 李庆海, 李飞, 蒋楚生. 巴中车站高边坡破坏机理分析及整治措施[J]. 路基工程, 2015, 33(1): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201501045.htm
Li Q H, Li F, Jiang C S. Analysis on failure mechanism of high slope at Bazhong railway station and the countermeasures[J]. Subgrade Engineering, 2015, 33(1): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201501045.htm
-