DAMAGE CAUSES AND STABILITY EVALUATION OF EXTREMELY HIGH REMOTE DANGEROUS ROCK GROUP: A case study of Wufeng Mountain area in northeast Yunnan
-
摘要:
特高位远程危岩崩塌具有突发性强、速度快、势能大、摧毁力强、冲击性大、影响范围广等特征. 滇东北地区镇雄县5处危岩位于乌峰山南缘斜坡地带, 地层近水平, 崩塌区地形坡度达70°以上. 崩塌区和危岩区基岩裸露面积为0.07 km2, 坡脚与坡顶高差达222 m, 危岩体平均高差159 m, 落石水平最大位移216 m, 属典型特高位远程危岩群. 采用定性和定量方法, 结合内外部条件, 综合分析危岩的10项基本影响因子, 评价其稳定性. 5处危岩在不同工况下稳定性差, 破坏模式为倾倒式, 高速远程动力崩塌易产生碎屑流, 呈散态扇形高速冲击流动, 裸露区面积大, 生态环境脆弱, 亟待治理.
Abstract:Extremely high remote dangerous rock collapse is characterized by suddenness, fast speed, great potential energy, severe destruction force, strong impact and wide influence range. Five dangerous rock blocks are located on the southern slope of Wufeng Mountain in Zhenxiong County, northeast Yunnan. The strata are near horizontal and the topographic slope of collapse area is above 70°. The bare area of bedrock is 0.07 km2 in collapse and dangerous rock area, with the height difference of 222 m from slope toe to top, the average height difference of 159 m for dangerous rock mass, and the maximum horizontal displacement of rockfall of 216 m, belonging to typical extremely high remote dangerous rock group. The qualitative and quantitative methods are used to comprehensively analyze 10 basic influencing factors of dangerous rocks and evaluate the stability combined with internal and external conditions. The results show that the five dangerous rocks have poor stability with the toppling-type damage mode. The high-speed remote dynamic collapse easily generates debris flows, which impact and flow in high speed as scattered fans. The large bare area and fragile eco-environment are in urgent need of treatment.
-
-
表 1 乌峰山危岩特征表
Table 1. Characteristics of dangerous rocks in Wufeng Mountain
危岩编号 长/m 宽/m 高/m 体积/m3 高程/m W1 24.51 5.13 30.21 3798.49 2020 W2 12.42 4.56 25.35 1435.70 2039 W3 26.12 5.61 13.14 1925.45 2044 W4 15.14 6.21 6.42 603.60 1974 W5 20.41 6.14 10.21 1279.49 1951 表 2 乌峰山崩塌落石特征表
Table 2. Characteristics of collapse rockfalls in Wufeng Mountain
编号 岩性 长/m 宽/m 厚/m 体积/m3 位置 K1 粉砂岩 0.7 0.77 0.55 0.30 坡脚 K2 粉砂岩 0.8 1.6 1.3 1.66 坡脚 K3 粉砂岩 0.53 1.1 0.54 0.31 坡脚 K4 粉砂岩 0.69 0.3 0.84 0.17 坡脚 K5 粉砂岩 1.3 1.28 0.56 0.93 坡脚 K6 细砂岩 1.66 0.81 1.13 1.52 坡脚 K7 细砂岩 2.21 1.72 0.37 1.41 坡脚 K8 粉砂岩 1.10 0.53 0.52 0.28 坡脚 K9 细砂岩 0.93 0.54 0.24 0.12 坡脚 K10 细砂岩 1.66 1.3 0.4 0.86 坡脚 K11 细砂岩 0.22 0.7 0.55 0.08 坡脚 K12 细砂岩 0.35 0.77 0.55 0.15 坡脚 K13 细砂岩 0.75 0.34 0.36 0.09 坡脚 K14 粉砂岩 0.34 0.7 0.85 0.20 坡脚 K15 细砂岩 0.7 0.5 0.5 0.18 坡脚 K16 细砂岩 2.4 1.3 3.3 10.30 坡脚 表 3 岩土体力学参数取值
Table 3. Mechanical parameters of rock and soil mass
岩土体 重度/(kN/m3) C/kPa 内摩擦角ϕ0 /(°) 地基承载力q/kPa 碎石土 22.1 21.4 27.8 260 胶结碎石土 22.6 33.6 36.8 360 表 4 岩石力学参数统计表
Table 4. Statistical table of rock mechanics parameters
岩石名称 密度/(g/cm3) 抗压强度
σ/MPa抗拉强度
σ/MPa黏聚力
C0/kPa内摩擦角
ϕ0 /(°)天然 饱和 强风化粉砂岩 2.70 32.2 25.2 2.20 9.0 31 中风化粉砂岩 2.75 35.1 30.1 3.20 12.0 34 表 5 危岩体稳定性计算结果表
Table 5. Stability calculation results of dangerous rocks
编号 体积/m3 破坏模式 稳定系数K 安全系数 稳定性评价 天然 暴雨 地震 天然 暴雨 地震 W1 3798.49 倾倒式 1.878 0.409 0.387 1.5 稳定 不稳定 不稳定 W2 1435.70 倾倒式 2.426 1.096 0.973 1.5 稳定 欠稳定 不稳定 W3 1925.45 倾倒式 1.284 0.606 0.565 1.5 欠稳定 不稳定 不稳定 W4 603.60 倾倒式 1.914 1.429 1.256 1.5 稳定 基本稳定 欠稳定 W5 1279.49 倾倒式 9.344 1.507 1.365 1.5 稳定 稳定 基本稳定 -
[1] 陈洪凯, 董平, 唐红梅. 危岩崩塌灾害研究现状与趋势[J]. 重庆师范大学学报(自然科学版), 2015, 32(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201506009.htm
Chen H K, Dong P, Tang H M. The status quo and trends of perilous rock and collapse disaster[J]. Journal of Chongqing Normal University (Natural Science), 2015, 32(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201506009.htm
[2] 章涛. 危岩破坏机理的研究进展[J]. 地质与资源, 2018, 27(5): 488-493. doi: 10.3969/j.issn.1671-1947.2018.05.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8497.shtml
Zhang T. Research progress on the failure mechanism of unstable rock [J]. Geology and Resources, 2018, 27(5): 488-493. doi: 10.3969/j.issn.1671-1947.2018.05.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8497.shtml
[3] 刘福臻, 李旭德, 王军朝, 等. 基于无人机和Rockfall Analyst的崩塌落石特征分析与运动学模拟——以察雅县崩塌落石为例[J]. 自然灾害学报, 2021, 30(3): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202103019.htm
Liu F Z, Li X D, Wang J C, et al. Characteristic analysis and kinematic simulation of rockfall based on UAV and Rockfall Analyst: A case study of rockfall in Chaya County[J]. Journal of Natural Disasters, 2021, 30(3): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202103019.htm
[4] 李元灵, 刘建康, 张佳佳, 等. 藏东察达高位崩塌发育特征及潜在危险[J]. 现代地质, 2021, 35(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101009.htm
Li Y L, Liu J K, Zhang J J, et al. Characteristics and potential hazard of the Chada collapse in eastern Xizang[J]. Geoscience, 2021, 35(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101009.htm
[5] 徐晨栋, 苑康泽, 郭子坤, 等. 清子高速某工程滑坡诱发机制及治理模拟[J]. 地质与资源, 2020, 29(2): 196-201. doi: 10.3969/j.issn.1671-1947.2020.02.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10192.shtml
Xu C D, Yuan K Ze, Guo Z K, et al. Inducement mechanism and treatment simulation of an engineering landslide on Qingzi expressway [J]. Geology and Resources, 2020, 29(2): 196-201. doi: 10.3969/j.issn.1671-1947.2020.02.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10192.shtml
[6] 张永双, 巴仁基, 任三绍, 等. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质, 2020, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm
Zhang Y S, Ba R J, Ren S S, et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River, Xizang[J]. Geology in China, 2020, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm
[7] 宋胜武, 冯学敏, 向柏宇, 等. 西南水电高陡岩石边坡工程关键技术研究[J]. 岩石力学与工程学报, 2011, 30(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101002.htm
Song S W, Feng X M, Xiang B Y, et al. Research on key technologies for high and steep rock slopes of hydropower engineering in Southwest China[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101002.htm
[8] 吴福, 范秋雁, 李拓, 等. 危岩稳定性计算新体系[J]. 地质与勘探, 2018, 54(4): 791-800. doi: 10.3969/j.issn.0495-5331.2018.04.012
Wu F, Fan Q Y, Li T, et al. A new system of stability calculation for dangerous rock mass[J]. Geology and Exploration, 2018, 54(4): 791- 800. doi: 10.3969/j.issn.0495-5331.2018.04.012
[9] 彭贵芬, 余美兰, 彭勃, 等. 云南省冰冻灾害气象条件及风险评估——基于模糊信息分配方法的研究[J]. 自然灾害学报, 2012, 21 (2): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201202021.htm
Peng G F, Yu M L, Peng B, et al. Meteorological conditions and risk assessment of frost hazards in Yunnan Province: Research based on fuzzy information distribution method[J]. Journal of Natural Disasters, 2012, 21(2): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201202021.htm
[10] 王涛, 段鹏. 山西省中阳县地质灾害特征及区划研究[J]. 地质与资源, 2016, 25(5): 487-493. doi: 10.3969/j.issn.1671-1947.2016.05.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8678.shtml
Wang T, Duan P. Research of the characteristics and zonation of geological hazards in Zhongyang County, Shanxi Province[J]. Geology and Resources, 2016, 25(5): 487-493. doi: 10.3969/j.issn.1671-1947.2016.05.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8678.shtml
[11] 刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
Liu C Z, Lü J T, Tong L Q, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Xizang [J]. Geology in China, 2019, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
[12] 刘传正, 陈春利. 中国地质灾害成因分析[J]. 地质论评, 2020, 66 (5): 1334-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005022.htm
Liu C Z, Chen C L. Research on the origins of geological disasters in China[J]. Geological Review, 2020, 66(5): 1334-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005022.htm
[13] 吴玮江. 季节性冻融作用与斜坡整体变形破坏[J]. 中国地质灾害与防治学报, 1996, 7(4): 59-64, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH604.009.htm
Wu W J. Seasonal freeze-thaw action and the entire deformation, failure of slope[J]. The Chinese Journal of Geological Hazard and Control, 1996, 7(4): 59-64, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH604.009.htm
[14] 杨艳霞, 祝艳波, 李才, 等. 南方极端冰雪灾害条件下边坡崩塌机理初步研究[J]. 人民长江, 2012, 43(2): 46-49. doi: 10.3969/j.issn.1001-4179.2012.02.010
Yang Y X, Zhu Y B, Li C, et al. Preliminary research on formation mechanism of collapse under the condition of extreme snow hazard [J]. Yangtze River, 2012, 43(2): 46-49. doi: 10.3969/j.issn.1001-4179.2012.02.010
[15] 刘廷登. 砂页岩悬崖陡壁危岩发育机制浅探[J]. 中国地质灾害与防治学报, 2001, 12(3): 53-56. doi: 10.3969/j.issn.1003-8035.2001.03.014
Liu T D. Study on the development mechanism of the dangerous rock mass in the sandstone and shale cliff[J]. The Chinese Journal of Geological Hazard and Control, 2001, 12(3): 53-56. doi: 10.3969/j.issn.1003-8035.2001.03.014
[16] 陈智强, 李渝生. 重庆市南川甑子岩危岩形成演化机制分析及防治措施探讨[J]. 中国地质灾害与防治学报, 2004, 15(1): 78-81. doi: 10.3969/j.issn.1003-8035.2004.01.017
Chen Z Q, Li Y S. Analysis on formation and development mechanism and discussion on prevention measures for Zenziyan dangerous rock mass in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(1): 78-81. doi: 10.3969/j.issn.1003-8035.2004.01.017
[17] 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 2014, 60(4): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201404018.htm
Liu C Z. Genetic types of landslide and debris flow disasters in China [J]. Geological Review, 2014, 60(4): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201404018.htm
[18] 沈瑜, 王新新. 西部寒旱地区岩石冻融损伤机理研究[J]. 城市道桥与防洪, 2017(9): 223-224. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ201709081.htm
Shen Y, Wang X X. Study on freeze thawing and damage mechanism of rock in western cold and dry areas[J]. Urban Roads Bridges & Flood Control, 2017(9): 223-224. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ201709081.htm
[19] 贺凯, 高杨, 殷跃平, 等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质, 2020, 47(4): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004010.htm
He K, Gao Y, Yin Y P, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology and Engineering Geology, 2020, 47(4): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004010.htm
[20] 重庆市质量技术监督局. DB50/143-2003地质灾害防治工程勘察规范[S]. 重庆: 重庆市质量技术监督局, 2003: 28-32.
Chongqing Municipal Bureau of Quality and Technical Supervision. DB50/143-2003 Code for investigation of geological disaster control engineering[S]. Chongqing: Chongqing Municipal Bureau of Quality and Technical Supervision, 2003: 28-32.
[21] 中华人民共和国住房和城乡建设部. GB50330-2013建筑边坡工程技术规范[S]. 北京: 中国建筑工业出版社, 2014: 21.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB50330-2013 Technical code for building slope engineering[S]. Beijing: China Architecture & Building Press, 2014: 21.
[22] 中华人民共和国国土资源部. DZ/T0218-2006滑坡防治工程勘查规范[S]. 北京: 中国标准出版社, 2006: 20.
Ministry of Land and Resources of the People's Republic of China. DZ/T0218-2006 Specification of geological investigation for landslide stabilization[S]. Beijing: China Standard Press, 2006: 20.
-