REMOTE SENSING APPLIED IN GEOLOGICAL AND MINERAL SURVEY IN FOREST-COVERED AREA OF DAXINGANLING MOUNTAINS: A Case Study of : 50 000 Regional Geological and Mineral Survey in Luoguhe, Heilongjiang Province
-
摘要:
大兴安岭地区森林覆盖严重, 气候严寒, 交通极为不便, 野外有效工作时间短, 给区域地质矿产调查工作增加了难度, 急需遥感手段提高成果质量和效率. 在黑龙江大兴安岭洛古河等4幅1:5万区域地质矿产调查工作中, 利用SPOT7、Landsat7/8、ASTER等多种遥感数据开展地质矿产解译, 进行遥感影像分区, 建立地层、构造和侵入岩解译标志, 提取羟基和铁染蚀变异常, 结合水系沉积物测量成果划分了成矿有利区, 有效降低了地质矿产调查强度, 提高了调查效率, 增强了调查质量. 表明遥感技术在大兴安岭高植被覆盖区地质矿产调查过程中能够取得较好效果.
Abstract:Due to the heavy forest cover, harsh climate, inconvenient transportation and short effective time for field work in Daxinganling Mountains, remote sensing technology is urgently needed to improve the quality and efficiency of regional geological and mineral survey. In the 1 : 50 000 regional geological and mineral survey of Luoguhe in Heilongjiang Province, multiple remote sensing data including SPOT7, Landsat7/8 and ASTER are used for geological and mineral interpretation, remote sensing image zoning, establishment of interpretation markers for strata, structures and intrusive rocks, and extraction of hydroxyl and iron-stained alteration anomalies, and the favorable mineralization areas are divided combined with the stream sediment survey results, which both effectively reduces the geological survey intensity and improves the survey efficiency and quality. The study indicates that remote sensing technology can achieve good results in geological mineral survey in the dense vegetation coverage areas of Daxinganling Mountains.
-
Key words:
- remote sensing /
- geological and mineral survey /
- SPOT7 /
- Landsat7/8 /
- ASTER /
- forest-covered area /
- Daxinganling Mountains
-
-
表 1 遥感数据基本参数
Table 1. Basic parameters of remote sensing data
数据采集时间 空间分辨率 数据类型 用途 2014-04-29 多光谱30 m,全色15 m Landsat 8 OLI 构造、岩石组合解译 1999-09-03 多光谱30 m,全色15 m Landsat 7 ETM+ 构造、岩石组合、蚀变解译 2013-09-01 多光谱30 m,全色15 m Landsat 8 OLI 构造、岩石组合解译 2014-09-20 多光谱30 m,全色15 m Landsat 8 OLI 构造、岩石组合解译 2015-09-23 多光谱30 m,全色15 m Landsat 8 OLI 构造、岩石组合解译 2015-09-19 多光谱6 m,全色1.5 m SPOT 7 构造、岩石组合解译 表 2 Landsat 7 ETM+各波段间相关系数
Table 2. Correlation coefficients between bands of Landsat 7 ETM+
波段 1 2 3 4 5 6 7 1 1.00 0.94 0.96 0.15 0.74 0.30 0.84 2 1.00 0.96 0.24 0.80 0.77 0.87 3 1.00 0.18 0.81 0.81 0.90 4 1.00 0.43 0.66 0.18 5 1.00 0.85 0.93 6 1.00 0.91 7 1.00 表 3 影像分区特征
Table 3. Characteristics of remote sensing image zoning
分区 位置 颜色 纹理 水系 主要地质体 Ⅰ区 研究区北部,黑龙江沿岸 以绿色、草绿色夹红色为主,无植被覆盖地段则呈现暗红色调 比较光滑 水系不发育 第四纪冲洪积物、孙吴组、漠河组为主 Ⅱ区 研究区中西部,以低山丘陵为主 以暗绿色和草绿色为主,裸露区段以暗红和粉红色调为主 粗糙 冲沟发育,形成不太典型的树枝状水系、蠕虫状水系 以漠河组为主 Ⅲ区 从南至北以北北东走向条带状贯穿全区 以草绿色、浅绿色为主,植被覆盖少的地段呈黄绿色、黄白色 稍显粗糙 冲沟以树枝状水系为主,多形成狭长冲沟,局部有不典型的“丰”字形水系 绣峰组、阿凌河砾岩和侵入岩体为主,少部分为额尔古纳河组变质岩 Ⅳ区 研究区西南部,以低山丘陵为主 以绿色、草绿色调为主,伴有暗粉红色彩,岩石和土壤裸露区以红色、深红色调为主 比较粗糙 冲沟发育,多数形成短粗树枝状水系 佳疙瘩组、绣峰组及晚二叠世侵入岩为主 Ⅴ区 研究区西南部 裸露区以粉红色和红色为主,覆盖区以草绿和绿色调为主 相对光滑 细长的树枝状和蠕虫状水系,冲沟发育相对较少 早白垩世侵入岩为主 Ⅵ区 研究区东南部,以低山丘陵为主 整体以红、绿色为主 比较粗糙 较宽的树枝状水系,冲沟特别发育 早侏罗世侵入岩 表 4 蚀变提取主成分特征向量
Table 4. Feature vectors of alteration information extraction by principal component analysis
主成分 1 4 5 7 主成分 1 3 4 5 PC1 0.19454 0.35306 0.474729 0.55391 PC1 0.19456 0.58598 0.47068 0.2356 PC2 0.58199 0.38500 -0.47088 -0.30152 PC2 -0.35125 -0.47652 -0.25932 0.68325 PC3 0.58617 -0.55262 -0.25621 0.53395 PC3 0.56953 -0.19267 -0.42623 0.17987 PC4 0.45220 -0.50328 0.65218 -0.56876 PC4 -0.58356 0.63598 -0.69525 0.35785 -
[1] 张克信, 孙赜, 于庆文, 等. 基于数字填图系统的遥感等数据在构造-地层分区和地层单位识别中的应用——以1 : 25万民和县幅、临夏市幅和定西市幅数字地质填图为例[J]. 地质通报, 2008, 27(7): 965-973. doi: 10.3969/j.issn.1671-2552.2008.07.005
Zhang K X, Sun Z, Yu Q W, et al. Application of remote sensing data to the tectono-stratigraphic division and recognition of stratigraphic units based on the digital mapping system: A case study of 1 : 250 000 digital geological mapping of the Minhe County, Linxia City and Dingxi City sheets, northwestern China[J]. Geological Bulletin of China, 2008, 27(7): 965-973. doi: 10.3969/j.issn.1671-2552.2008.07.005
[2] 薛重生. 遥感技术在区域地质调查中的应用研究进展[J]. 地质科技情报, 1997, 16(S1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ7S1.002.htm
Xue C S. Application and progress of remote sensing techniques in regional geological surveying[J]. Geological Science and Technology Information, 1997, 16(S1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ7S1.002.htm
[3] 闫颖, 陈有炘, 孟勇, 等. 遥感技术在东天山大黑山地区地质填图中的应用[J]. 西北地质, 2015, 48(2): 231-237. doi: 10.3969/j.issn.1009-6248.2015.02.024
Yan Y, Chen Y X, Meng Y, et al. Application of remote sensing technique in the geologic mapping of Daheishan region, eastern Tianshan[J]. Northwestern Geology, 2015, 48(2): 231-237. doi: 10.3969/j.issn.1009-6248.2015.02.024
[4] 张晓东, 刘湘南, 李明涛, 等. 遥感在宁夏贺兰山东北段1 : 50 000区域地质调查中的应用研究[J]. 矿产与地质, 2016, 30(4): 674- 680. doi: 10.3969/j.issn.1001-5663.2016.04.026
Zhang X D, Liu X N, Li M T, et al. Application of remote sensing technique in 1 : 50, 000 scale regional geological survey of northeastern section of Helan Mountain of Ningxia[J]. Mineral Resources and Geology, 2016, 30(4): 674-680. doi: 10.3969/j.issn.1001-5663.2016.04.026
[5] 凤骏. 遥感技术在新疆乌齐里克它乌一带1 : 5万区域地质矿产调查中的应用[D]. 乌鲁木齐: 新疆大学, 2014: 1-49.
Feng J. The application of remote sensing technology in the 1 : 50 000 regional geology and mineral resources survey, Wuqiliketawu, Xinjiang[J]. Xinjiang: Xinjiang Normal University, 2014: 1-49.
[6] 陈昌礼. 全面推广遥感技术, 加速1 : 5万区域地质调查进程[J]. 国土资源遥感, 1991(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199102000.htm
Chen C L. Spreading remote sensing technology overall and speeding up 1 : 50 000 regional geological survey[J]. Remote Sensing for Land & Resources, 1991(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199102000.htm
[7] 张志平, 吴勇, 焦世文, 等. 遥感地质解译路线在西藏羌塘地区1 : 5万区域地质调查中的应用[J]. 甘肃地质, 2014, 23(3): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201403015.htm
Zhang Z P, Wu Y, Jiao S W, et al. Application of remote sensing routine interpretation for 1 : 50 000 regional geological survey in Qiangtang area of Tibet[J]. Gansu Geology, 2014, 23(3): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201403015.htm
[8] 胡健民, 陈虹, 邱士东, 等. 覆盖区区域地质调查(1 : 50 000)思路、原则与方法[J]. 地球科学, 2020, 45(12): 4291-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012002.htm
Hu J M, Chen H, Qiu S D, et al. Thoughts, principles and methods of regional geological survey in covered area (1 : 50 000)[J]. Earth Science, 2020, 45(12): 4291-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012002.htm
[9] 吴志春, 郭福生, 刘林清, 等. 遥感技术在区域地质调查中的应用研究——以江西省1 : 5万陀上幅区调应用为例[J]. 东华理工大学学报(自然科学版), 2013, 36(4): 364-374. doi: 10.3969/j.issn.1674-3504.2013.04.003
Wu Z C, Guo F S, Liu L Q, et al. Application of the remote sensing technology in regional geological survey: A case study in Tuoshang, Jiangxi Province by 1 : 50 000[J]. Journal of East China Institute of Technology (Natural Science), 2013, 36(4): 364-374. doi: 10.3969/j.issn.1674-3504.2013.04.003
[10] 张志军, 刘世华, 孔迪, 等. 北巴颜喀拉山1 : 5万区域地质调查中的遥感解译应用[J]. 现代地质, 2016, 30(5): 1141-1149. doi: 10.3969/j.issn.1000-8527.2016.05.019
Zhang Z J, Liu S H, Kong D, et al. Application of remote sensing interpretation on 1 : 50, 000 regional geological survey of North Bayan Hara Mountain[J]. Geoscience, 2016, 30(5): 1141-1149. doi: 10.3969/j.issn.1000-8527.2016.05.019
[11] 何鹏, 滕学建, 刘洋, 等. 遥感解译在内蒙古狼山戈壁荒漠地区1 : 50 000地质填图中的应用[J]. 地质力学学报, 2016, 22(4): 882-892. doi: 10.3969/j.issn.1006-6616.2016.04.007
He P, Teng X J, Liu Y, et al. Application of remote sensing interpretation for 1 : 50 000 geologic mapping in Langshan Gobi desert area, Inner Mongolia[J]. Journal of Geomechanics, 2016, 22(4): 882-892. doi: 10.3969/j.issn.1006-6616.2016.04.007
[12] 程洋, 吕勇, 涂杰楠, 等. 遥感技术在岩溶区1 : 50 000区域地质调查中的应用——以黔西北地区为例[J]. 地质力学学报, 2016, 22 (4): 921-932. doi: 10.3969/j.issn.1006-6616.2016.04.010
Cheng Y, Lv Y, Tu J N, et al. Application of remote sensing technology in the 1 : 50 000 regional geological survey in karst area: A case study of northwest Guizhou[J]. Journal of Geomechanics, 2016, 22(4): 921-932. doi: 10.3969/j.issn.1006-6616.2016.04.010
[13] 王洪波, 杨晓平. 大兴安岭北段新一轮国土资源大调查以来的主要基础地质成果与进展[J]. 地质通报, 2013, 32(2/3): 525-532. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1025.htm
Wang H B, Yang X P. Main geological achievements and progress of the new round of national land and resources survey in north Daxinganling[J]. Geological Bulletin of China, 2013, 32(2/3): 525-532. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1025.htm
[14] 周传芳, 杨华本, 蔡艳龙, 等. 漠河盆地西缘漠河组形成时代及物源区构造环境判别[J]. 中国地质, 2021, 48(3): 832-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103014.htm
Zhou C F, Yang H B, Cai Y L, et al. Stratigraphic age of the Mohe Formation in the western margin of Mohe Basin and tectonic environment discrimination of provenance[J]. Geology in China, 2021, 48(3): 832-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103014.htm
[15] 刘永江, 冯志强, 蒋立伟, 等. 中国东北地区蛇绿岩[J]. 岩石学报, 2019, 35(10): 3017-3047. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910006.htm
Liu Y J, Feng Z Q, Jiang L W, et al. Ophiolite in the eastern central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 2019, 35(10): 3017-3047. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910006.htm
[16] 杨伟, 陈晋, 松下文经, 等. 基于混合像元分解的遥感图像融合实用算法[J]. 中国科学: 信息科学, 2010, 40(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201005004.htm
Yang W, Chen J, Matsushita B, et al. A practical remote sensing image fusion algorithm based on hybrid pixel decomposition[J]. Scientia Sinica (Informationis), 2010, 40(5): 668-677. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201005004.htm
[17] 陈添乐, 陈蜀江, 黄铁成. 利用ETM数据对新疆西天山赛里木湖四台-温泉县地区进行1 : 5万地质填图的遥感解译及探索[J]. 新疆师范大学学报(自然科学版), 2011, 30(4): 12-18.
Chen T L, Chen S J, Huang T C. ETM data using western Tianshan Sailimu Lake Sitai-Hot Springs County area in Xinjiang 1 : 5 million geological mapping and exploration of remote sensing interpretation[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2011, 30(4): 12-18.
[18] 王学超. 遥感技术在内蒙古甘河等地地质矿产调查中的应用[D]. 长春: 吉林大学, 2016: 1-36.
Wang X C. Application of remote sensing technique to the regional geology and mineral resources survey in Ganhe area of Neimenggu[D]. Changchun: Jilin University, 2016: 1-36.
[19] 王阳, 马瑞, 和钟铧, 等. 内蒙古塔尔气地区佳疙瘩组地质特征及锆石年代学研究[J]. 世界地质, 2016, 35(2): 357-369. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201602007.htm
Wang Y, Ma R, He Z H, et al. Research on geological characteristics and zircon U-Pb age of Jiageda Formation in Taerqi, Inner Mongolia[J]. Global Geology, 2016, 35(2): 357-369. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201602007.htm
[20] 赵寒冬, 尹志刚, 马丽玲, 等. 上黑龙江盆地中侏罗统绣峰组的沉积环境与大地构造背景[J]. 地质通报, 2007, 26(7): 823-829. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200707004.htm
Zhao H D, Yin Z G, Ma L L, et al. Sedimentary environment and tectonic setting of the Middle Jurassic Xiufeng Formation in the Upper Heilongjiang River Basin[J]. Geological Bulletin of China, 2007, 26 (7): 823-829. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200707004.htm
[21] 杨华本, 周传芳, 魏小勇, 等. 漠河地区晚古生代—中生代花岗质岩浆作用: 对蒙古-鄂霍茨克造山带俯冲闭合的启示[J]. 地质论评, 2020, 66(S1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2020S1010.htm
Yang H B, Zhou C F, Wei X Y, et al. Late Paleozoic to Mesozoic granites magmatism in Mohe area and its implication on subduction to collision of the Mongol-Okhotsk Orogen[J]. Geological Review, 2020, 66(S1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2020S1010.htm
[22] 段明新, 周传芳, 杨华本, 等. 黑龙江省漠河县富源沟林场含电气石花岗岩的形成时代及地质意义[J]. 地质科学, 2019, 54(4): 1290-1307.
Duan M X, Zhou C F, Yang H B, et al. Geochronology and geochemistry of Fuyuangoulinchang tourmaline-bearing granites in Mohe County, Heilongjiang Province, NE China, and their implications[J]. Chinese Journal of Geology, 2019, 54(4): 1290-1307.
[23] 吴小娟, 肖晨超, 杨日红, 等. 秘鲁南部斑岩铜矿典型蚀变带矿物信息提取及找矿远景区圈定[J]. 地球科学——中国地质大学学报, 2015, 40(11): 1802-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511003.htm
Wu X J, Xiao C C, Yang R H, et al. Information extraction of typical alteration zone of porphyry copper deposit and delineation of prospective areas in Southern Peru[J]. Earth Science — Journal of China University of Geosciences, 2015, 40(11): 1802-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511003.htm
[24] 宋伊圩, 王鹏, 连琛芹, 等. 基于ASTER光谱特征的岩性填图和蚀变信息提取: 念扎金矿例析[J]. 西北地质, 2021, 54(2): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202102013.htm
Song Y W, Wang P, Lian C Q, et al. Lithologic mapping and alteration information extracting based on ASTER spectral signature: An example from Nianzha gold deposit[J]. Northwestern Geology, 2021, 54(2): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202102013.htm
[25] 吴燕清, 王世成, 丁园, 等. 内蒙古新城子盆地铀及多金属矿产勘查遥感应用[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1917-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006027.htm
Wu Y Q, Wang S C, Ding Y, et al. Application of remote sensing in uranium and polymetallic mineral exploration in Xinchengzi basin, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6): 1917-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006027.htm
[26] 周传芳, 王献忠, 李向文, 等. 黑龙江省塔河县宝兴沟金矿床中生代侵入岩及其对成矿作用的制约[J]. 矿床地质, 2018, 37(1): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201801010.htm
Zhou C F, Wang X Z, Li X W, et al. Mesozoic intrusive rocks and their constraints on mineralization in Baoxinggou gold deposit in Tahe County, Heilongjiang Province[J]. Mineral Deposits, 2018, 37(1): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201801010.htm
-