NEWLY DISCOVERED DAXIYINGZI Rb-Be DEPOSIT IN THE EASTERN SECTION OF THE NORTHERN MARGIN OF NORTH CHINA CRATON
-
摘要:
辽宁省阜新市大喜营子矿床是华北克拉通北缘新发现的铷铍稀有金属矿床, 属花岗伟晶岩型矿床, 主要由黑云母花岗岩、钠长石花岗岩和天河石花岗伟晶岩组成. 含Rb和Be的主要矿石矿物为天河石和绿柱石, 赋存于天河石花岗伟晶岩中. 该矿床的成矿年龄为223 Ma左右. 地球化学特征表明该花岗岩为高分异I型花岗岩, 来源于中新元古界基底的高温部分熔融, 并有幔源岩浆注入. 大喜营子铷-铍矿床是形成于造山带背景下的过铝岩浆多金属矿床, 该矿的发现为华北克拉通北缘的找矿提供了新的方向.
Abstract:The Daxiyingzi Rb-Be deposit in Fuxin City of Liaoning Province is newly discovered in the northern margin of North China Craton, belonging to the granite-pegmatite type rare metal deposit, mainly composed of biotite granite, albite granite and amazonite granite pegmatite. The ore minerals containing Rb and Be are mainly amazonite and beryl, which are hosted in amazonite granite pegmatite. The metallogenic age of the deposit is about 223 Ma. The geochemical characteristics indicate that the granite is of highly fractioned I-type, which originated from the high-temperature partial melting of Meso-Neoproterozoic basement, with injection of mantle-derived magma. The peraluminous magmatic polymetallic deposit was formed in the orogenic belt setting. Its discovery provides a new direction for mineral exploration in the northern margin of North China Craton.
-
Key words:
- Daxiyingzi Rb-Be deposit /
- amazonite /
- beryl /
- highly fractionated granite /
- North China Craton /
- Liaoning Province
-
-
图 1 华北克拉通北缘大喜营子矿床构造位置图(据文献[15])
Figure 1.
图 3 大喜营子花岗岩岩相及矿化垂向分带剖面图(据文献[22])
Figure 3.
-
[1] Linnen R L, Van Lichtervelde M, Černý P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275
[2] Gulley A L, Nassar N T, Xun S A. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4111-4115. doi: 10.1073/pnas.1717152115
[3] 侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033002.htm
Hou Z Q, Chen J, Zhai M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033002.htm
[4] 饶灿, 王汝成, 车旭东, 等. 关键金属铍的成矿机制与找矿前景[J]. 岩石学报, 2022, 38(7): 1848-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202207002.htm
Rao C, Wang R C, Che X D, et al. Metallogenic mechanism and prospect of key metal beryllium[J]. Acta Petrologica Sinica, 2022, 38(7): 1848-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202207002.htm
[5] 王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001
Wang D H, Wang R J, Li J K, et al. The progress in the strategic research and survey of rare earth, rare metaland rare-scattered elements mineral resources[J]. Geology in China, 2013, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001
[6] 李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201002.htm
Li W C, Li J W, Xie G Q, et al. Critical minerals in China: Current status, research focus and resource strategic analysis[J]. Earth Science Frontiers, 2022, 29(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201002.htm
[7] 孙艳, 王登红, 王成辉, 等. 我国铷矿成矿规律、新进展和找矿方向[J]. 地质学报, 2019, 93(6): 1231-1244. doi: 10.3969/j.issn.0001-5717.2019.06.005
Sun Y, Wang D H, Wang C H, et al. Metallogenic regularity, new prospecting and guide direction of rubidium deposits in China[J]. Acta Geologica Sinica, 2019, 93(6): 1231-1244. doi: 10.3969/j.issn.0001-5717.2019.06.005
[8] 李建康, 邹天人, 王登红, 等. 中国铍矿成矿规律[J]. 矿床地质, 2017, 36(4): 951-978.
Li J K, Zou T R, Wang D H, et al. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 2017, 36(4): 951-978.
[9] 郑范博, 王国光, 倪培. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 2021, 27(4): 596-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104007.htm
Zheng F B, Wang G G, Ni P. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics, 2021, 27(4): 596-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104007.htm
[10] 廖诗进. 西峡县陈阳坪铍铷矿地质特征[J]. 地质学报, 2021, 95(12): 3790-3798.
Liao S J. Geological characteristics of beryllium rubidium deposit in the Chenyangping area, Xixia County[J]. Acta Geologica Sinica, 2021, 95(12): 3790-3798.
[11] 陈雪锋, 范裕, 周涛发, 等. 江南隆起带安徽宁国西坞口矿床铷的赋存状态及其成矿机制研究[J]. 地学前缘, 2022, 29(1): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201007.htm
Chen X F, Fan Y, Zhou T F, et al. The Xiwukou Rb deposit in the Jiangnan uplift belt, Ningguo City, Anhui Province: Rb occurrence and ore-forming mechanisms[J]. Earth Science Frontiers, 2022, 29(1): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201007.htm
[12] 李出安, 林振文, 庄文明, 等. 广东珠海深井坳发现绿柱石伟晶岩型铍矿点[J]. 中国地质, 2022, 49(6): 2036-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202206025.htm
Li C A, Lin Z W, Zhuang W M, et al. Discovery of beryl pegmatite Be mineralization in Shengjing'ao, Zhuhai, Guangdong Province[J]. Geology in China, 2022, 49(6): 2036-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202206025.htm
[13] 乔耿彪, 丁建刚, 苏永海, 等. 新疆阿尔泰山别也萨麻斯一带发现新的锂、铍、铌、钽等稀有金属矿点[J]. 中国地质, 2020, 47(2): 542-543.
Qiao G B, Ding J G, Su Y H, et al. The discovery of Li, Be, Nb, Ta rare metal ore spots in the Bieyesamas area in Altay, Xinjiang[J]. Geology in China, 2020, 47(2): 542-543.
[14] 张航飞, 文俊. 川南新类型铌-稀土多金属矿产资源研究进展[J]. 地质与资源, 2021, 30(4): 519-520. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10327.shtml
Zhang H F, Wen J. Research progress of new type Nb-REE polymetallic resources in southern Sichuan[J]. Geology and Resources, 2021, 30(4): 519-520. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10327.shtml
[15] 王汝成, 车旭东, 邬斌, 等. 中国铌钽锆铪资源[J]. 科学通报, 2020, 65(33): 3763-3777.
Wang R C, Che X D, Wu B, et al. Critical mineral resources of Nb, Ta, Zr, and Hf in China[J]. Chinese Science Bulletin, 2020, 65(33): 3763-3777.
[16] Tang H Y, Liu Y, Song W L. Igneous genesis of the Bayan Obo REE-Nb-Fe deposit: New petrographical and structural evidence from the H1-H9 cross-section and deep-drilling exploration[J]. Ore Geology Reviews, 2021, 138: 104397.
[17] Zhang T F, Hou Z Q, Zheng Y C, et al. Geochronology and geochemistry of the granites from the Jiabusi Ta-Nb-(Li-Rb-Cs) deposit at the northern margin of the North China Craton[J]. Ore Geology Reviews, 2022, 147: 104969.
[18] 段先哲, 时皓, 谭凯旋, 等. 内蒙古石灰窑花岗岩型铌钽铷矿床地质特征及成因[J]. 地质与资源, 2016, 25(1): 32-40. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8599.shtml
Duan X Z, Shi H, Tan K X, et al. Geology and genesis of the granitic niobium-tantalum-rubidium deposit in Shihuiyao area, Inner Mongolia[J]. Geology and Resources, 2016, 25(1): 32-40. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8599.shtml
[19] Ju N, Ren Y S, Zhang S, et al. Metallogenic epoch and tectonic setting of Saima niobium deposit in Fengcheng, Liaoning Province, NE China[J]. Minerals, 2019, 9(2): 80, doi: 10.3390/min9020080.
[20] 李金轩, 伍月, 鞠楠, 等. 辽东地区赛马矿床中首次发现独立铌钽矿物[J]. 地质与资源, 2022, 31(6): 833-836. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10456.shtml
Li J X, Wu Y, Ju N, et al. Independent niobium and tantalum minerals discovered in Saima deposit, eastern Liaoning[J]. Geology and Resources, 2022, 31(6): 833-836. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10456.shtml
[21] Chen B Y, Wu C Z, Brzozowski M J, et al. Geochronology and tectonic setting of the giant Guobaoshan Rb deposit, Central Tianshan, NW China[J]. Ore Geology Reviews, 2022, 141: 104636.
[22] Ju N, Shi L, Feng Y H, et al. Genesis of the recently discovered Daxiyingzi Rb-Be deposit on the northern margin of the North China Craton: Evidence from 40Ar/39Ar ages and geochemical data[J]. Ore Geology Reviews, 2022, 150: 105152.
-