GEOCHEMISTRY AND GENESIS OF TONGDE FLAKE GRAPHITE DEPOSIT IN THE WESTERN MARGIN OF YANGTZE PLATE
-
摘要:
同德鳞片石墨矿床位于扬子板块西缘,拥有超过500×104 t鳞片石墨资源储量,是攀西地区石墨成矿带中最大、最具代表性的鳞片石墨矿床之一.研究表明:矿石中SiO2含量为55.65%~61.68%,SiO2/Al2O3比值4.59~5.42,Ni/Co比值6.23~12.88,富集Ba、Rb、Sr等大离子亲石元素和Nb、Zr、Hf、Th、U等高场强元素,ΣREE为149.13×10-6~195.37×10-6,具有弱的Ce负异常和Eu负异常,代表了缺氧的海相沉积环境.通过镜下片度测定与统计,石墨片径0.08~0.9 mm,主要分布于0.15~0.4 mm(大于100目),占比53%,属于中-大鳞片石墨.碳同位素δ13CV-PDB值介于-25.0‰~-23.5‰,表明碳质来源于有机物.碳质经过沉积并通过区域变质作用形成石墨后,岩浆岩的侵入带来的热量将使石墨进一步富集并形成大的石墨鳞片.基于前人的研究和新取得的数据,针对同德石墨矿床提出并建立了一个三阶段成因模型,即碳源沉积、区域变质作用、后期岩浆-热液改造作用.
Abstract:Tongde flake graphite deposit, located in the western margin of Yangtze Plate with over 500×104 t reserves, is one of the largest and most representative flake graphite deposits in the graphite metallogenic belt of Panxi area. The study shows that the SiO2 content in ores is 55.65%-61.68%, with the SiO2/Al2O3 ratio of 4.59-5.42, the Ni/Co ratio of 6.23-12.88, characterized by enrichment of LILEs (Ba, Rb and Sr) and HFSEs (Nb, Zr, Hf, Th and U), ΣREE of 149.13×10-6-195.37×10-6, and weak negative Ce and Eu anomalies, indicating an anoxic marine sedimentary environment. The microscopic size measurement of graphite shows the flake diameter is 0.08-0.9 mm, mainly ranged in 0.15-0.4 mm, averagely counting for 53%, belonging to the medium-large flake graphite. The δ13CV-PDB of carbon isotopes is -25.0‰ to -23.5‰, indicating that the carbon is derived from organic matter. After the carbon is deposited and formed into graphite by regional metamorphism, the heat from the intrusion of magmatic rocks would contribute to the further enrichment of graphite and then form large graphite flakes. Based on previous studies and newly available data, a three-stage genetic model of Tongde graphite deposit is proposed, including carbon source deposition, regional metamorphism and late magmatic-hydrothermal transformation.
-
Key words:
- graphite deposit /
- carbon isotope /
- geochemistry /
- genetic model /
- Yangtze Plate /
- Sichuan Province
-
-
图 1 扬子板块西缘地质简图(据文献[16])
Figure 1.
图 4 同德石墨矿矿石微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化配分图(据文献[24])
Figure 4.
表 1 同德石墨矿床主量、微量和稀土元素分析结果
Table 1. Contents of major, trace and rare earth elements in Tongde graphite deposit
样品号 TD-7 TD-8 TD-9 TD-10 TD-11 样品号 TD-7 TD-8 TD-9 TD-10 TD-11 SiO2 61.68 55.65 55.83 57.42 58.13 Hf 4.47 4.71 4.38 4.26 4.52 Al2O3 13.33 11.36 12.16 12.07 10.72 Cr 154 136 147 125 187 Fe2O3 3.61 2.71 3.58 3.97 3.55 Co 32.2 29.7 31.2 28.9 41.6 FeO 2.51 2.68 2.05 2.43 1.80 Ni 235 185 342 182 536 CaO 2.69 6.98 3.57 5.45 4.43 Ni/Co 7.30 6.23 10.96 6.30 12.88 MgO 2.54 2.48 1.19 1.33 0.64 Rb/Sr 0.300 0.220 0.180 0.530 0.180 K2O 2.22 1.57 1.78 2.29 1.91 Sr/Ba 0.200 0.270 0.210 0.120 0.150 Na2O 1.28 0.51 0.64 0.56 0.45 U/Th 0.350 0.240 0.260 0.550 0.680 TiO2 0.37 0.43 0.21 0.30 0.23 La 31.9 35.0 48.4 34.5 45.0 P2O5 0.45 0.33 1.24 0.47 1.14 Ce 52.3 58.1 75.8 55.8 60.9 MnO 0.14 0.35 0.11 0.13 0.35 Pr 7.35 7.77 10.72 7.81 9.57 V2O5 0.06 0.05 0.10 0.07 0.23 Nd 30.9 32.7 45 32.4 40.1 Mn 0.11 0.27 0.08 0.10 0.27 Sm 6.24 6.71 9.14 6.54 7.99 烧失量 8.48 13.30 13.70 12.26 13.66 Eu 1.34 1.47 2.27 1.46 1.89 合计 99.47 98.67 96.24 98.85 97.51 Gd 5.62 6.48 8.36 5.93 7.95 固定碳 3.73 3.32 8.78 5.61 8.54 Tb 0.88 1.06 1.26 0.96 1.26 A/CNK 1.58 0.78 1.82 0.98 1.28 Dy 5.10 6.40 7.06 5.62 7.90 A/NK 2.96 4.48 4.08 3.55 3.82 Ho 1.05 1.38 1.41 1.18 1.74 SiO2/Al2O3 4.63 4.90 4.59 4.76 5.42 Er 2.80 3.80 3.56 3.12 4.80 N2O+K2O 3.50 2.08 2.42 2.85 2.36 Tm 0.460 0.620 0.550 0.500 0.770 K2O/N2O 1.73 3.08 2.78 4.09 4.24 Yb 2.78 3.96 3.37 3.17 4.78 CaO/MgO 1.06 2.81 3.00 4.10 6.92 Lu 0.410 0.590 0.510 0.470 0.720 Sr 0.024 0.027 0.035 0.015 0.037 Y 36.7 49.4 52.9 41.2 73.9 Ba 0.120 0.100 0.170 0.130 0.240 Ir 2.98 3.50 2.69 2.81 2.74 Rb 72.5 60.2 61.4 78.9 66.5 ΣREE 149.13 166.04 217.41 159.46 195.37 Ba 1200 1000 1700 1300 2400 LREE 130.0 141.8 191.3 138.5 165.5 Th 9.72 11.39 14.99 8.68 9.79 HREE 19.1 24.29 26.08 20.95 29.92 U 3.37 2.78 3.87 4.79 6.64 LREE/HREE 6.81 5.84 7.34 6.61 5.53 Nb 7.86 9.79 7.06 6.68 6.50 (La/Yb)N 8.23 6.34 10.3 7.81 6.75 Ta 0.750 0.820 0.610 0.550 0.510 δEu 0.690 0.680 0.790 0.720 0.720 Sr 240 270 350 150 370 δCe 0.840 0.860 0.820 0.830 0.720 Zr 270 321 279 255 280 单位:主量元素及Sr、Ba为%,Ir为10-9,其他微量和稀土元素为10-6. 表 2 同德石墨矿粒度占比统计一览表
Table 2. Particle size statistics of Tongde graphite ores
目数 >100 100~80 80~50 >50 矿段 粒级/mm >0.147 0.147~0.175 0.175~0.287 >0.287 Ⅰ(8件) 57 27 18 12 管家箐-硝洞湾 Ⅱ(12件) 48 16 18 14 Ⅲ(22件) 50 20 19 11 Ⅴ(12件) 50 20 20 10 Ⅵ(2件) 72 20 37 15 芭蕉箐 Ⅶ(17件) 69 18 29 22 Ⅷ(19件) 62 20 28 14 Ⅷ-1(5件) 74 23 32 19 Ⅸ(3件) 77 22 33 22 Ⅹ(4件) 68 24 29 15 Ⅺ(1件) 56 11 21 24 Ⅻ(15件) 16 9 5 1 大麦地 未编号(11件) 51 18 20 13 平均(131件) 53 19 21 13 单位:%. 表 3 同德石墨矿与同类型石墨矿床碳同位素对比
Table 3. Carbon isotope correlation between Tongde graphite deposit and the same types
-
[1] Hazen R M, Downs R T, Jones A P, et al. Carbon mineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7-46. doi: 10.2138/rmg.2013.75.2
[2] 颜玲亚, 高树学, 陈正国, 等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 2018, 45(3): 421-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201803002.htm
Yan L Y, Gao S X, Chen Z G, et al. Metallogenic characteristics and metallogenic zoning of graphite deposits in China[J]. Geology in China, 2018, 45(3): 421-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201803002.htm
[3] 张艳飞, 安政臻, 梁帅, 等. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 2022, 49(1): 135-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201009.htm
Zhang Y F, An Z Z, Liang S, et al. Distribution characteristics, genetic types and prospecting progress of graphite deposits[J]. Geology in China, 2022, 49(1): 135-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201009.htm
[4] Buseck P R, Beyssac O. From organic matter to graphite: Graphitization [J]. Elements, 2014, 10(6): 421-426. doi: 10.2113/gselements.10.6.421
[5] 李超, 王登红, 赵鸿, 等. 中国石墨矿床成矿规律概要[J]. 矿床地质, 2015, 34(6): 1223-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506011.htm
Li C, Wang D H, Zhao H, et al. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 2015, 34(6): 1223-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506011.htm
[6] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906003.htm
Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906003.htm
[7] 吴大天, 赵院冬, 姜平, 等. 欧盟2020版关键原材料清单的认识与启示[J]. 地质与资源, 2023, 32(2): 185-192. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10479.shtml
Wu D T, Zhao Y D, Jiang P, et al. Knowledge and enlightenment of the EU List of Critical Raw Materials (2020). Geology and Resources, 2023, 32(2): 185-192. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10479.shtml
[8] 冯锋, 王光洪, 彭召强, 等. 四川省攀枝花市仁和区新民石墨矿矿床成因及成矿规律探讨[J]. 四川地质学报, 2021, 41(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB202102008.htm
Feng F, Wang G H, Peng Z Q, et al. Genesis and metallogeny of the Xinmin graphite deposit in Renhe District, Panzhihua, Sichuan[J]. Acta Geologica Sichuan, 2021, 41(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB202102008.htm
[9] Zhao J H, Zhou M F, Yan D P, et al. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 2008, 163(3/4): 189-209.
[10] Sun W H, Zhou M F, Zhao J H. Geochemistry and tectonic significance of basaltic lavas in the Neoproterozoic Yanbian Group, Southern Sichuan Province, Southwest China[J]. International Geology Review, 2007, 49(6): 554-571. doi: 10.2747/0020-6814.49.6.554
[11] Du L L, Guo J H, Nutman A P, et al. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860 Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan Pluton[J]. Lithos, 2014, 196/197: 67-82. doi: 10.1016/j.lithos.2014.03.002
[12] Zhao J H, Li Q W, Liu H, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator [J]. Earth-Science Reviews, 2018, 187: 1-18. doi: 10.1016/j.earscirev.2018.10.004
[13] Zhu Y, Lai S C, Qin J F, et al. Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China[J]. Journal of Asian Earth Sciences, 2019, 183: 103977. doi: 10.1016/j.jseaes.2019.103977
[14] Li X H, Li Z X, Sinclair J A, et al. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China[J]. Precambrian Research, 2006, 151(1/2): 14-30.
[15] Sun W H, Zhou M F. The ~860 Ma, cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China: Implications for the origin of Neoproterozoic magmatism[J]. The Journal of Geology, 2008, 116(3): 238-253. doi: 10.1086/587881
[16] Zhao J H, Zhou M F, Wu Y B, et al. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton[J]. Contributions to Mineralogy and Petrology, 2019, 174(4): 36. doi: 10.1007/s00410-019-1573-7
[17] Munteanu M, Wilson A, Yao Y, et al. The Tongde dioritic pluton (Sichuan, SW China) and its geotectonic setting: Regional implications of a local-scale study[J]. Gondwana Research, 2010, 18 (2/3): 455-465.
[18] Li Q W, Zhao J H. The Neoproterozoic high-Mg dioritic dikes in South China formed by high pressures fractional crystallization of hydrous basaltic melts[J]. Precambrian Research, 2018, 309: 198-211. doi: 10.1016/j.precamres.2017.04.009
[19] Zhou M F, Ma Y X, Yan D P, et al. The Yanbian Terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144(1/2): 19-38.
[20] 李奇维. 扬子板块新元古代基性脉岩成因及地质意义[D]. 武汉: 中国地质大学, 2018.
Li Q W. Petrogenesis and tectonic implications of the Neoproterozoic mafic dikes in the Yangtze Block, South China[D]. Wuhan: China University of Geosciences, 2018.
[21] 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
Lu Y F. Geokit — A geochemical toolkit for Microsoft Excel[J]. Geochimica, 2004, 33(5): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
[22] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific, 1985: 1-132.
[23] Roser B P, Korsch R J. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge, the Torlesse terrane, New Zealand[J]. Geological Magazine, 1999, 136(5): 493-512. doi: 10.1017/S0016756899003003
[24] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C]//Saunders A D, Norry M J. Magmatism in the ocean basins. Geological Society Publishing, 1989: 313-345.
[25] 夏锦胜, 孙莉, 肖克炎, 等. 四川省中坝晶质石墨矿床地球化学特征及成因分析[J]. 现代地质, 2019, 33(6): 1286-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201906017.htm
Xia J S, Sun L, Xiao K Y, et al. Geochemical features and genesis analysis of the Zhongba scaly graphite deposit in Sichuan Province [J]. Geoscience, 2019, 33(6): 1286-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201906017.htm
[26] 段威, 唐文春, 黎龙昌, 等. 四川旺苍大河坝浅变质岩型石墨矿床地球化学特征与成因分析[J]. 现代地质, 2021, 35(3): 599-607. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103002.htm
Duan W, Tang W C, Li L C, et al. Geochemical characteristics and genesis analysis of Daheba epimetamorphic graphite deposit in Wangcang, Sichuan Province[J]. Geoscience, 2021, 35(3): 599-607. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103002.htm
[27] 马志鑫, 罗茂金, 刘喜停, 等. 四川南江坪河石墨矿炭质来源及成矿机制[J]. 地质科技情报, 2018, 37(3): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803018.htm
Ma Z X, Luo M J, Liu X T, et al. Carbon source and metallogenic mechanism of Pinghe graphite deposit at Nanjiang, Sichuan Province [J]. Geological Science and Technology Information, 2018, 37(3): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803018.htm
[28] 李光辉, 黄永卫, 吴润堂, 等. 鸡西柳毛石墨矿碳质来源及铀、钒的富集机制[J]. 世界地质, 2008, 27(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200801004.htm
Li G H, Huang Y W, Wu R T, et al. Origin of carbon and concentration of uranium and vanadium from Liumao graphite formation in Jixi[J]. Global Geology, 2008, 27(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200801004.htm
[29] Luque F J, Crespo-Feo E, Barrenechea J F, et al. Carbon isotopes of graphite: Implications on fluid history[J]. Geoscience Frontiers, 2012, 3(2): 197-207.
[30] Craig H. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 1953, 3(2/3): 53-92.
[31] Barrenechea J F, Luque F J, Millward D, et al. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data[J]. Contributions to Mineralogy and Petrology, 2009, 158(1): 37-51.
[32] Luque F J, Huizenga J M, Crespo-Feo E, et al. Vein graphite deposits: Geological settings, origin, and economic significance[J]. Mineralium Deposita, 2014, 49(2): 261-277.
[33] Zhang H F, Zhai M G, Santosh M, et al. Paleoproterozoic granulites from the Xinghe graphite mine, North China Craton: Geology, zircon U-Pb geochronology and implications for the timing of deformation, mineralization and metamorphism[J]. Ore Geology Reviews, 2014, 63: 478-497.
[34] Valley J W, O'Neil J R. 13C12C exchange between calcite and graphite: A possible thermometer in Grenville marbles[J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 411-419.
[35] Wada H. Microscale isotopic zoning in calcite and graphite crystals in marble[J]. Nature, 1988, 331(6151): 61-63.
[36] Zhang C, Yu X Y, Jiang T L. Mineral association and graphite inclusions in nephrite jade from Liaoning, Northeast China: Implications for metamorphic conditions and ore genesis[J]. Geoscience Frontiers, 2019, 10(2): 425-437.
[37] Zhang C, Santosh M. Coupled laser Raman spectroscopy and carbon stable isotopes of graphite from the khondalite belt of Kerala, southern India[J]. Lithos, 2019, 334-335: 245-253.
[38] Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: Evolution of a concept[J]. Precambrian Research, 2001, 106(1/2): 117-134.
[39] Wang J Y, Liu J C, Zhang H D, et al. Metamorphism, geochemistry, and carbon source on sedimentary-metamorphic graphite deposits in eastern Shandong, China[J]. Geological Journal, 2020, 55(5): 3748-3769.
[40] Yan M Q, Zhang D H, Huizenga J M, et al. Mineralogical and isotopic characterization of graphite deposits in the western part of the North Qaidam Orogen and East Kunlun Orogen, northeast Tibetan Plateau, China[J]. Ore Geology Reviews, 2020, 126: 103788.
[41] Cui N, Sun L, Bagas L, et al. Geological characteristics and analysis of known and undiscovered graphite resources of China[J]. Ore Geology Reviews, 2017, 91: 1119-1129.
[42] 史会娟. 辽宁省北镇市石墨矿地质地球化学特征及原岩恢复[D]. 北京: 中国地质大学, 2015.
Shi H J. The geochemical fractures and protolith restoration of Beizhen City graphite mine in Liaoning Province[D]. Beijing: China University of Geosciences, 2015.
[43] Valley J W, Taylor H P, Moorbath S. Isotopic assessment of relative contributions from crust and mantle sources to the magma genesis of Precambrian granitoid rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 310(1514): 605-625.
[44] 蔡文春, 曾忠诚, 宋曙光, 等. 陕西商南湘河晶质石墨矿床地质特征与成因探讨[J]. 西北地质, 2020, 53(3): 220-232. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003022.htm
Cai W C, Zeng Z C, Song S G, et al. Geological characteristics and genesis of the Xianghe crystalline graphite deposit in Shangnan County of Shaanxi Province[J]. Northwestern Geology, 2020, 53(3): 220-232. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003022.htm
[45] 柴广路, 李双应. 北淮阳东段佛子岭群变质岩地球化学特征及其地质意义[J]. 地学前缘, 2016, 23(4): 29-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604004.htm
Chai G L, Li S Y. Geochemical characteristics and geological implications for the metamorphic rocks of Foziling Group in eastern of North Huaiyang Tectonic Belt[J]. Earth Science Frontiers, 2016, 23 (4): 29-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604004.htm
[46] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htm
Yang S Y, Li C X. Research progress in REE tracer for sediment source[J]. Advance in Earth Sciences, 1999, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htm
[47] 刘英俊, 曹励明, 1987. 元素地球化学导论[M]. 北京: 地质出版社: 34-56.
Liu Y J, Cao L M. An introduction to element geochemistry[M]. Beijing: Geological Publishing House, 1987. (in Chinese)
[48] Ma Y, Huang Y, Liu L. Genesis of the Tianping flake graphite deposit at the western margin of Yangtze Block, SW China[J]. Ore Geology Reviews, 2021, 139: 104434.
[49] 白家全, 郭道军, 凌亚军, 等. 攀枝花石墨矿成矿地质规律及成矿模型初探[J]. 四川地质学报, 2021, 41(3): 398-405. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB202103009.htm
Bai J Q, Guo D J, Ling Y J, et al. A preliminary study of metallogenic regularities and metallogenic model of crystalline graphite deposits in Panzhihua[J]. Acta Geologica Sichuan, 2021, 41(3): 398-405. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB202103009.htm
[50] 于海军, 王雪, 白家全. 攀枝花石墨矿床控矿构造特征与找矿模型[J]. 四川有色金属, 2020(4): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS202004011.htm
Yu H J, Wang X, Bai J Q. Main ore-controlling structural characteristics and prospecting model of Panzhihua graphite deposit[J]. Sichuan Nonferrous Metals, 2020(4): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS202004011.htm
-