-
摘要:
矿物蚀变信息是地质找矿的重要依据和手段,利用遥感数据提取蚀变信息是遥感应用领域研究的热点.通过对近年来蚀变信息提取涉及的遥感数据、矿物类别、常用方法等进行梳理,对比分析不同遥感蚀变信息提取方法的效果,总结了遥感蚀变信息提取的发展方向.结果表明,遥感数据朝着高空间分辨率发展,蚀变信息的地面精度随之提高;光谱分辨率的提高使得可提取矿物越来越多;数学方法和人工智能的发展提升了蚀变信息提取方法的应用空间.
Abstract:The use of remote sensing data to extract mineral alteration information, which serves as important basis and means for geological prospecting, is a research focus in the field of remote sensing application. By studying the remote sensing data, mineral types and common methods involved in alteration information extraction in recent years, the paper makes a comparison analysis of the effects of different remote sensing methods to extract alteration information, and summarizes its development trends. The results show that the ground accuracy of alteration information is improving accordingly with the development of remote sensing data towards high spatial resolution. More and more minerals can be extracted due to the improvement of spectral resolution. The development of mathematical methods and artificial intelligence has improved the application space of alteration information extraction.
-
-
表 1 离子光谱吸收位置及代表矿物
Table 1. Ion spectra absorption positions and representative minerals
离子 吸收峰位置/μm 代表矿物 Fe2+ 0.43,0.45,0.51,0.55,1.0~1.1,1.8~1.9 菱铁矿、黄铁矿 Fe3+ 0.4,0.45,0.49,0.52,0.7,0.87 赤铁矿、褐铁矿 Cu2+ 0.80 蓝铜矿、孔雀石 Mn2+ 0.34,0.37,0.41,0.55 菱锰矿、水锰矿 OH- 1.4,2.2(Al–OH);2.30(Mg–OH) 绿泥石、蒙脱石、白云母、绿帘石 CO32- 1.9,2.0,2.16,2.35,2.55 方解石、菱铁矿、白云石 H2O 主要在1.4和1.9 石英、石膏、蒙脱石 -
[1] 李根军, 张焜, 李善财, 等. GF-1数据在柴达木盆地北缘大柴旦地区找矿预测中的应用[J]. 矿产勘查, 2017, 8(4): 672–681. doi: 10.3969/j.issn.1674-7801.2017.04.020
Li G J, Zhang K, Li S C, et al. Application of GF-1 remote sensing data in prospecting prediction in the Dachaidan area, northern margin of Qaidam Basin[J]. Mineral Exploration, 2017, 8(4): 672–681. doi: 10.3969/j.issn.1674-7801.2017.04.020
[2] 吴一全, 盛东慧, 周杨. PCA和布谷鸟算法优化SVM的遥感矿化蚀变信息提取[J]. 遥感学报, 2018, 22(5): 810–821. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201805009.htm
Wu Y Q, Sheng D H, Zhou Y. Remote sensing mineralization alteration information extraction based on PCA and SVM optimized by cuckoo algorithm[J]. National Remote Sensing Bulletin, 2018, 22(5): 810–821. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201805009.htm
[3] 唐淑兰, 曹建农, 王凯. 结合PCA、多尺度分割及SVM的ASTER遥感蚀变信息提取[J]. 遥感学报, 2021, 25(2): 653–664. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102011.htm
Tang S L, Cao J N, Wang K. Remote sensing mineralization alteration information extraction based on PCA, multilevel segment method, and SVM[J]. National Remote Sensing Bulletin, 2021, 25(2): 653–664. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102011.htm
[4] 董丽芳. 基于遗传算法的遥感矿化蚀变信息提取——以青海拉陵灶火地区为例[D]. 长春: 吉林大学, 2020.
Dong L F. Extracting mineral alteration information from remote sensing images based on genetic algorithm in Qinghai Lalingzaohuo region[D]. Changchun: Jilin University, 2020.
[5] 陈三明, 钱建平, 陈宏毅. 桂东南植被覆盖区的抗干扰遥感蚀变信息优化提取与找矿预测[J]. 桂林理工大学学报, 2010, 30(1): 33–40. doi: 10.3969/j.issn.1674-9057.2010.01.005
Chen S M, Qian J P, Chen H Y. Remote sensing alteration information optimization extractionin vegetation coverage areaand prospects forecasting in southeast Guangxi[J]. Journal of Guilin University of Technology, 2010, 30(1): 33–40. doi: 10.3969/j.issn.1674-9057.2010.01.005
[6] 赵芝玲, 王萍, 荆林海, 等. 用ASTER数据提取植被覆盖区遥感铁矿化蚀变信息[J]. 金属矿山, 2016(10): 109–115. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201610023.htm
Zhao Z L, Wang P, Jing L H, et al. Extraction method of iron mineralized alteration information in vegetation covered areas based on remote sensing ASTER data[J]. Metal Mine, 2016(10): 109–115. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201610023.htm
[7] 贺婷, 王成楠, 李建国, 等. ASTER遥感数据蚀变异常信息提取研究——以赞比亚15973矿权区铜多金属矿为例[C]//江西遥感. 南昌: 江西省遥感应用协会, 2017(2): 23–28, 34.
He T, Wang C N, Li J G, et al. Extraction of alteration anomaly information from ASTER remote sensing data: A case study of the 15973 copper polymetallic deposit in Zambia[C]//Jiangxi Remote Sensing. Nanchang: Jiangxi Remote Sensing Application Association, 2017(2): 23–28, 34. (in Chinese)
[8] 连琛芹, 姚佛军, 杨建民, 等. 半裸露区遥感蚀变信息提取研究——以甘肃玛曲地区为例[J]. 现代地质, 2019, 33(5): 1079–1085. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905016.htm
Lian C Q, Yao F J, Yang J M, et al. The extraction of alteration information with remote sensing image of semi-exposed area: A case study of the Maqu area in Gansu[J]. Geoscience, 2019, 33(5): 1079–1085. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905016.htm
[9] Seifi A, Esmaeily A, Mokhtari Z. A new hybrid method for epithermal gold exploration using multi-sensor satellite data in Sistan and Baluchestan Province (Iran)[J]. Ore Geology Reviews, 2021, 138: 104357. doi: 10.1016/j.oregeorev.2021.104357
[10] Huang X, Zhang L P. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257–272. doi: 10.1109/TGRS.2012.2202912
[11] Amer R, Kusky T, Ghulam A. Lithological mapping in the central eastern desert of Egypt using ASTER data[J]. Journal of African Earth Sciences, 2010, 56(2/3): 75–82.
[12] Jiang Y T. Research on road extraction of remote sensing image based on convolutional neural network[J]. EURASIP Journal on Image and Video Processing, 2019(1): 31.
[13] 荆凤, 陈建平. 矿化蚀变信息的遥感提取方法综述[J]. 遥感信息, 2005, 20(2): 62–65, 57. doi: 10.3969/j.issn.1000-3177.2005.02.016
Jing F, Chen J P. The review of the alteration information extraction with remote sensing[J]. Remote Sensing Information, 2005, 20(2): 62–65, 57. doi: 10.3969/j.issn.1000-3177.2005.02.016
[14] 梁丹迪, 周可法, 王珊珊, 等. 不同空间分辨率高光谱遥感数据对蚀变矿物信息提取的影响[J]. 地质科技情报, 2019, 38(3): 282–289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903031.htm
Liang D D, Zhou K F, Wang S S, et al. Effects of different spatial resolution hyperspectral remote sensing data on the extraction of alteration minerals information[J]. Geological Science and Technology Information, 2019, 38(3): 282–289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903031.htm
[15] Sabins F F. Remote sensing for mineral exploration[J]. Ore Geology Reviews, 1999, 14(3/4): 157–183.
[16] 于晓. TM/ETM+遥感影像蚀变异常提取与筛选系统开发[D]. 北京: 中国地质大学, 2015.
Yu X. TM/ETM+ remote sensing image alteration anomaly extraction and filter system development[D]. Beijing: China University of Geosciences, 2015.
[17] 张胜龙, 刘林, 耿海军, 等. 基于Landsat 8 OLI数据甘肃陇南赵家庄地区遥感蚀变信息提取[J]. 铀矿地质, 2020, 36(6): 535–540. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202006007.htm
Zhang S L, Liu L, Geng H J, et al. Remote sensing alteration extraction based on Landsat 8 OLI data in Zhaojiazhuang area, Longnan, Gansu Province[J]. Uranium Geology, 2020, 36(6): 535–540. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202006007.htm
[18] 宋坤, 王恩德, 付建飞, 等. 基于Landsat 8数据的弓长岭矿区遥感蚀变异常信息提取[J]. 金属矿山, 2022, 37(4): 149–157. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202204021.htm
Song K, Wang E D, Fu J F, et al. Extraction of remote sensing alteration anomaly information based on Landsat 8 data in Gongchangling mining area[J]. Metal Mine, 2022, 37(4): 149–157 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202204021.htm
[19] 陈刚, 陈金群, 王进寿. 基于ETM+的遥感蚀变信息提取研究——以青海省拉陵灶火地区为例[J]. 资源调查与环境, 2014, 35(4): 293–298. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201404009.htm
Chen G, Chen J Q, Wang J S. Study on remote sensing alteration information extraction based on ETM+ data: Taking Lalingzaohuo area of Qinghai Province as an example[J]. Resources Survey and Environment, 2014, 35(4): 293–298. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201404009.htm
[20] 张玉君, 曾朝铭, 陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J]. 国土资源遥感, 2003, 16(2): 44–49. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200302011.htm
Zhang Y J, Zeng Z M, Chen W. The methods for extraction of alteration anomalies from the ETM+(TM) data and their application: Method selection and technological flow chart[J]. Remote Sensing for Land & Resources, 2003, 16(2): 44–49. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200302011.htm
[21] 刘建宇, 陈玲, 李伟, 等. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019, 31(1): 229–236. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201901031.htm
Liu J Y, Chen L, Li W, et al. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 229–236. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201901031.htm
[22] 刘磊, 周军, 尹芳, 等. 基于ASTER数据的巴里坤地区蚀变矿物填图及找矿[J]. 遥感技术与应用, 2013, 28(4): 556–561. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201304003.htm
Liu L, Zhou J, Yin F, et al. Alteration mineral mapping and ore prospecting based on ASTER data in Balikun, Xinjing[J]. Remote Sensing Technology and Application, 2013, 28(4): 556–561. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201304003.htm
[23] 付翰泽, 刘得磊, 窦海鹏, 等. ASTER数据在萨热克铜矿地区蚀变信息提取中的应用[J]. 矿山测量, 2017, 45(6): 69–72. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201706016.htm
Fu H Z, Liu D L, Dou H P, et al. Application of ASTER in alternation extraction in Sareke copper mine region[J]. Mine Surveying, 2017, 45(6): 69–72. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201706016.htm
[24] 李星喆. 基于Sentinel-2A卫星数据蚀变信息提取的研究——以北衙金矿为例[D]. 长春: 吉林大学, 2021.
Li X Z. Research on alteration information extraction based on Sentinel-2A satellite data: Taking the Beiya Gold Mine as an example[D]. Changchun: Jilin University, 2021.
[25] 王磊, 杨斌, 李丹, 等. 基于Sentinel-2A的矿化蚀变异常信息提取应用[J]. 西南科技大学学报, 2018, 33(1): 55–61, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201801010.htm
Wang L, Yang B, Li D, et al. Abnormal information extraction and application of mineralization alteration based on Sentinel-2A[J]. Journal of Southwest University of Science and Technology, 2018, 33(1): 55–61, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201801010.htm
[26] 孙娅琴. WorldView-3数据处理与蚀变信息提取方法研究——以新疆坡北地区为例[D]. 北京: 中国地质大学, 2017.
Sun Y Q. Method research of WorldView-3 data on data processing and alteration information extraction: A case study of Pobei district in Xinjiang Province[D]. Beijing: China University of Geosciences, 2017.
[27] 牛璐璐. 航空高光谱遥感影像自动拼接技术研究[D]. 长春: 吉林大学, 2016.
Niu L L. Research on automatic image mosaic techniques of aerial hyperspectral remote sensing images[D]. Changchun: Jilin University, 2016.
[28] 付严宇, 杨桄, 关世豪. 航空航天高光谱成像仪研究现状及发展趋势[J]. 红外, 2020, 41(8): 1–8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202008001.htm
Fu Y Y, Yang G, Guan S H. Research status and development trend of hyperspectral imagers onboard airborne and spaceborne platforms[J]. Infrared, 2020, 41(8): 1–8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202008001.htm
[29] Laukamp C, Rodger A, Legras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 347.
[30] 朱骏. 植被干扰区蚀变信息遥感提取方法研究[D]. 杭州: 浙江大学, 2012.
Zhu J. A study on remote sensing alteration information extraction in vegetation area[D]. Hangzhou: Zhejiang University, 2012.
[31] 梁昊, 李程, 李佳奇. 基于Landsat 8遥感影像的矿化信息提取——以内蒙古额济纳为例[J]. 南方国土资源, 2016(11): 30–32, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ201611014.htm
Liang H, Li C, Li J Q. Extraction of mineralization information based on Landsat 8 remote sensing images[J]. Southern Land and Resources, 2016(11): 30–32, 36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ201611014.htm
[32] 吴志春, 叶发旺, 郭福生, 等. 主成分分析技术在遥感蚀变信息提取中的应用研究综述[J]. 地球信息科学学报, 2018, 20(11): 1644–1656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201811012.htm
Wu Z C, Ye F W, Guo F S, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing[J]. Journal of Geo-Information Science, 2018, 20(11): 1644–1656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201811012.htm
[33] 姜天. 辽宁省弓长岭区遥感蚀变信息提取[D]. 长春: 吉林大学, 2019.
Jiang T. Extraction of alteration information from remote sensing data in the Gongchangling district, Liaoning Province[D]. Changchun: Jilin University, 2019.
[34] 高少锋. 江西德兴斑岩型铜多金属矿集区遥感蚀变异常信息提取[D]. 西安: 长安大学, 2017.
Gao S F. Remote sensing alteration extraction in Dexing porphyry copper deposits area of Jiangxi Province[D]. Xi'an: Chang'an University, 2017.
[35] 王磊. 基于Sentinel-2A的矿化蚀变异常信息提取分析与应用[D]. 绵阳: 西南科技大学, 2018.
Wang L. Extraction and analysis of mineralized alteration anomaly information based on Sentinel-2A[D]. Mianyang: Southwest University of Science and Technology, 2018.
[36] 塔娜, 鲍甜甜, 冯一鸣, 等. 湖南长城岭-凤凰山地区遥感蚀变信息提取与成矿预测[J]. 地质找矿论丛, 2021, 36(3): 328–341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202103010.htm
Ta N, Bao T T, Feng Y M, et al. Remote sensing alteration information extraction from Changchengling-Fenghuangshan area, Hunan Province and the metallogenic prediction[J]. Contributions to Geology and Mineral Resources Research, 2021, 36(3): 328–341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202103010.htm
[37] 陈江, 王安建. 利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究[J]. 遥感学报, 2007, 11(4): 601–608. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200704024.htm
Chen J, Wang A J. The pilot study on petrochemistry components mapping with ASTER thermal infrared remote sensing data[J]. Journal of Remote Sensing, 2007, 11(4): 601–608. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200704024.htm
[38] 吴德文, 张远飞, 朱谷昌. 遥感图像岩石信息提取的最优密度分割方法[J]. 国土资源遥感, 2002, 14(4): 51–54, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204011.htm
Wu D W, Zhang Y F, Zhu G C. The best density separation method for extracting rock information from remote sensing image[J]. Remote Sensing for Land & Resources, 2002, 14(4): 51–54, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204011.htm
[39] 甘甫平, 王润生, 郭小方, 等. 高光谱遥感信息提取与地质应用前景——以青藏高原为试验区[J]. 国土资源遥感, 2000, 12(3): 38–44. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200003005.htm
Gan F P, Wang R S, Guo X F, et al. Extraction for rock and ore deposits information and prospects for application of geology using hypersperctral remote sensing: Tibet Plateau as test sample[J]. Remote Sensing for Land & Resources, 2000, 12(3): 38–44. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200003005.htm
[40] 甘甫平, 王润生, 杨苏明. 西藏Hyperion数据蚀变矿物识别初步研究[J]. 国土资源遥感, 2002, 14(4): 44–50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204009.htm
Gan F P, Wang R S, Yang S M. Studying on the alteration minerals identification using hyperion data[J]. Remote Sensing for Land & Resources, 2002, 14(4): 44–50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204009.htm
[41] 龙明周, 李伟, 岳小军. 广西罗维铅锌银多金属矿区围岩蚀变与矿化关系研究——基于SVM遥感矿化蚀变信息提取方法[J]. 矿产与地质, 2021, 35(3): 580–585, 602. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202103029.htm
Long M Z, Li W, Yue X J. Study on the relationship between surrounding rock alteration and mineralization of Luowei Pb-Zn-Ag polymetallic mining area: Extraction method of mineralization alteration information based on SVM remote sensing[J]. Mineral Resources and Geology, 2021, 35(3): 580–585, 602. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202103029.htm
[42] 王东. 基于粒子群智能的遥感找矿方法研究[D]. 长沙: 中南大学, 2008.
Wang D. Research of remote sensing ore-finding method based on particle swarm intelligence[D]. Changsha: Central South University, 2008.
[43] 陈尧东. 基于支持向量机的遥感矿化蚀变信息提取方法研究[D]. 长沙: 中南大学, 2007.
Chen Y D. Research on an approach of extracting remote sensing altered rock's information by support vector machine[D]. Changsha: Central South University, 2007.
[44] 邓捷, 白亚辉, 吕凤军. 比值法遥感蚀变信息提取及阈值确定[J]. 地质学刊, 2017, 41(3): 504–510. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703020.htm
Deng J, Bai Y H, Lyu F J. Remote sensing alteration information extraction and threshold determination by band ratio method[J]. Journal of Geology, 2017, 41(3): 504–510. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703020.htm
[45] 何凯涛, 甘甫平, 王永江. 高空间分辨率卫星遥感地质微构造及蚀变信息识别[J]. 国土资源遥感, 2009, 21(1): 97–99. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200901021.htm
He K T, Gan F P, Wang Y J. The extraction of geological micro-structure and altered rock information with high-resolution satellite images in a small range[J]. Remote Sensing for Land & Resources, 2009, 21(1): 97–99. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200901021.htm
[46] 李玉琴, 苏程, 王习之, 等. 菲律宾吕宋岛斑岩铜金矿遥感找矿模型[J]. 遥感技术与应用, 2017, 32(6): 1151–1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201706020.htm
Li Y Q, Su C, Wang X Z, et al. Extraction of alteration information and establishment of prospecting model for porphyry copper-gold deposits in Luzon[J]. Remote Sensing Technology and Application, 2017, 32(6): 1151–1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201706020.htm
[47] 韩琦. 湖南花垣铅锌矿遥感信息提取与成矿预测研究[D]. 北京: 中国地质大学, 2017.
Han Q. The study of the remote sensing technology on information extraction and prognosis in Huayuan lead-zinc deposits, Hunan[D]. Beijing: China University of Geosciences, 2017.
[48] 彭光雄, 王明艳, 何皎. 基于局部可变窗口的Crosta蚀变信息提取技术——以莫海拉亨为例[J]. 大地构造与成矿学, 2013, 37(3): 553–560. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303021.htm
Peng G X, Wang M Y, He J. An improved Crosta technique based on local variable window for alteration information extraction: A case study of the Mohailaheng area[J]. Geotectonica et Metallogenia, 2013, 37(3): 553–560. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303021.htm
[49] 宿虎, 陈美媛, 张丹青, 等. 高植被覆盖区遥感矿化蚀变信息提取方法研究——以甘肃省西河县大桥石峡地区为例[J]. 西北地质, 2020, 53(1): 146–161. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202001014.htm
Su H, Chen M Y, Zhang D Q, et al. Study on the method of extracting information of mineralization alteration by using remote sensing in high vegetation coverage area: Taking Daqiao-Shixia area of Xihe County, Gansu Province for example[J]. Northwestern Geology, 2020, 53(1): 146–161. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202001014.htm
[50] 赵小星, 钱建平, 覃顺桥, 等. 云南江城大团包铜矿及外围高植被区遥感找矿预测[J]. 遥感技术与应用, 2013, 28(5): 879–889. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201305021.htm
Zhao X X, Qian J P, Qin S Q, et al. Remote sensing prospecting in high vegetation coverage area: A case study of the in Datuanbao copper ore deposit and its environs, Jiangcheng, Yunnan Province[J]. Remote Sensing Technology and Application, 2013, 28(5): 879–889. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201305021.htm
[51] 路轩轩. 植被覆盖区的遥感蚀变信息提取研究及应用[D]. 长沙: 中南大学, 2014.
Lu X X. The research and application of remote sensingalteration information extraction of vegetation coverage area[D]. Changsha: Central South University, 2014.
[52] 赵元洪, 张福祥, 陈南峰. 波段比值的主成份复合在热液蚀变信息提取中的应用[J]. 国土资源遥感, 1991, 3(3): 12–17. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199103002.htm
Zhao Y H, Zhang F X, Chen N F. The application of principal component integration of band ratios to extracting hydrothermal alteration information[J]. Remote Sensing for Land & Resources, 1991, 3(3): 12–17. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199103002.htm
[53] 姚佛军, 杨建民, 张玉君, 等. 光谱角制图法与谱线平行分类法若干问题的探讨——以ETM数据为例[J]. 遥感信息, 2009, 24(1): 20–22, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200901007.htm
Yao F J, Yang J M, Zhang Y J, et al. The analysis about SAM and parallel spectra classification[J]. Remote Sensing Information, 2009, 24(1): 20–22, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200901007.htm
[54] 张玉君, 曾朝铭, 姚佛军. 利用光谱角填图(SAM)优化多光谱遥感异常[J]. 矿物学报, 2015, 35(S1): 985. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1712.htm
Zhang Y J, Zeng Z M, Yao F J. Using spectral angle mapping (SAM) to optimize multi-spectral remote sensing anomalies[J]. Acta Mineralogica Sinica, 2015, 35(S1): 985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1712.htm
[55] 张洁. 玉龙斑岩铜矿带遥感蚀变信息提取技术方法研究[D]. 成都: 成都理工大学, 2017.
Zhang J. Study on extraction method of remote sensing alteration information in Yulong porphyry copper belt[D]. Chengdu: Chengdu University of Technology, 2017.
[56] 田青林, 潘蔚, 李瑶, 等. 基于小波包变换和权重光谱角制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4): 41–46. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201904009.htm
Tian Q L, Pan W, Li Y, et al. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41–46. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201904009.htm
[57] 刘汉湖. 岩矿波谱数据分析与信息提取方法研究[D]. 成都: 成都理工大学, 2008.
Liu H H. Research on the analysis of the spectrum data and extraction methods of minerals[D]. Chengdu: Chengdu University of Technology, 2008.
[58] 何政伟, 胡滨, 赵银兵, 等. 基于图像自身特征的绢云母化蚀变信息提取方法: 中国, 201510496890.4[P]. 2015-12-02.
He Z W, Hu B, Zhao Y B, et al. Extraction method of sericitization alteration information based on image characteristics: CN, 201510496890.4[P]. 2015-12-02. (in Chinese)
[59] 林娜, 杨武年, 刘汉湖. 基于高光谱遥感的岩矿端元识别及信息提取研究[J]. 遥感信息, 2011, 26(5): 114–117, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201105023.htm
Lin N, Yang W N, Liu H H. Mineral end member identification and information extraction based on hyperspectral remote sensing[J]. Remote Sensing Information, 2011, 26(5): 114–117, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201105023.htm
[60] Vapnik V, Vashist A. A new learning paradigm: Learning using privileged information[J]. Neural Networks, 2009, 22(5/6): 544–557.
[61] 薛云, 戴塔根, 邓会娟, 等. 基于蚁群算法的羟基蚀变信息的提取——以青海省同仁县阿哇地区为例[J]. 地质通报, 2008, 27(5): 657–661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200805011.htm
Xue Y, Dai T G, Deng H J, et al. Extraction of hydroxyl alteration information based on the ant colony algorithm: A case study of the Awa area, Tongren County, Qinghai, China[J]. Geological Bulletin of China, 2008, 27(5): 657–661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200805011.htm
[62] 薛云. 基于蚁群算法和支持向量机的矿化蚀变信息提取研究[D]. 长沙: 中南大学, 2008.
Xue Y. Extraction of mineral alteration information based on ant colony optimization algorithm and support vector machine[D]. Changsha: Central South University, 2008.
[63] 陈江, 王安建, 黄妙芬. 多种类植被覆盖地区ASTER影像岩石、土壤信息提取方法研究[J]. 地球学报, 2007, 28(1): 86–91. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200701012.htm
Chen J, Wang A J, Huang M F. The aster imaging rock and soil information extraction method in multiple vegetations covered areas[J]. Acta Geoscientica Sinica, 2007, 28(1): 86–91. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200701012.htm
[64] 程潭武, 陈建国, 徐梦扬. 混合像元分解法在植被覆盖区矿化蚀变信息提取中的应用——以江西大浩山金矿区为例[J]. 地质学刊, 2017, 41(3): 492–498. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703018.htm
Cheng T W, Chen J G, Xu M Y. Application of mixed pixel decomposition in mineralization and alteration information extraction in vegetation-covered area: A case study of the Dahaoshan gold deposit in Jiangxi Province[J]. Journal of Geology, 2017, 41(3): 492–498. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703018.htm
[65] 熊勤学, 胡佩敏. 基于HJ卫星混合像元分解法的湖北省四湖地区夏收作物种植信息提取[J]. 长江流域资源与环境, 2014, 23(6): 869–874. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201406018.htm
Xiong Q X, Hu P M. Extracting planting information of summer harvesting crops in Shihu region from HJ CCD data using unmixing algorithm data[J]. Resources and Environment in the Yangtze Basin, 2014, 23(6): 869–874. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201406018.htm
-