FARMLAND DYNAMIC CHANGE AND ITS DRIVING FORCE ANALYSIS IN GLOBAL BLACK SOIL REGIONS BASED ON LOGISTIC REGRESSION MODEL
-
摘要:
按照美国土壤分类系统, 全球广义黑土分为四大片.为探究全球黑土区耕地利用变化规律和驱动机制, 基于2005、2010、2015和2019年4期全球黑土区土地利用遥感监测数据, 借助GIS技术及数理统计软件, 分析全球黑土区耕地在14年间的动态变化特征.同时, 选取自然地理因素、社会因素为自变量, 以土地变化二分类(增加、减少)为因变量, 采用Logistic回归模型, 探讨研究区耕地变化的驱动因子.结果表明: 研究区内耕地变化显著, 3个阶段(2005-2010、2010-2015、2015-2019)先后出现小幅增加-大幅减少-小幅增加的趋势; 14年间耕地共减少58.77×104 km2, 其中亚洲黑土区耕地减少幅度最大, 占比31.70%, 减少的耕地有76.04%转变为未利用地.建立的耕地变化Logistic回归分析模型有效, 结果表明: 耕地变化在第1阶段(2005-2010年)的主要驱动因素是到最近道路距离、降水和高程(DEM); 第2阶段(2010-2015年)的驱动因素是到最近河流距离和高程; 第3阶段(2015-2019年)的驱动因素是到最近道路距离和温度.
-
关键词:
- Logistic模型 /
- 黑土 /
- 卫星遥感 /
- 耕地利用 /
- 生态系统
Abstract:According to the Soil Taxonomy, the black soil in the world is generally divided into four large tracts. To explore the change rule and driving mechanism of farmland use in the black soil regions, the dynamic change characteristics of farmland in global black soil regions during the past 14 years are analyzed based on the remote sensing monitoring data of land use during three stages of 2005-2010, 2010-2015 and 2015-2019 with GIS and mathematical statistics software. Besides, physical geographical and social factors are selected as independent variables and land change dichotomy of increase and decrease as dependent variables to explore the driving factors of farmland change in the study area. The results show that the farmland change is significant with a trend of slight increase-sharp decrease-slight increase during the above three stages. A total of 58.77×104 km2 of farmland has decreased in 14 years, of which the black soil region of Asia has the largest reduction, accounting for 31.70%, with 76.04% of the reduced farmland converted to unused land. The established Logistic regression analysis model of farmland change proves to be effective and shows that the main driving factors are distance to the nearest road, precipitation and digital elevation model (DEM) in the first stage (2005-2010), distance to the nearest river and DEM in the second stage (2010-2015) and distance to the nearest road and temperature in the third stage (2015-2019).
-
Key words:
- Logistic model /
- black soil /
- satellite remote sensing /
- farmland use /
- ecologic system
-
-
表 1 耕地利用变化及影响因子变量
Table 1. Cultivated land use changes and impact factor variables
变量 数据层 栅格类型 单位或描述 因变量 耕地变化(2005—2010年) 二分类 0(耕地减少) 1(耕地增加) 耕地变化(2010—2015年) 二分类 0(耕地减少) 1(耕地增加) 耕地变化(2015—2019年) 二分类 0(耕地减少) 1(耕地增加) 自变量 高程 连续型 m 坡度 多分类 哑变量设置 坡向 多分类 哑变量设置 到最近河流的距离 连续型 m 到最近道路的距离 连续型 m 温度 连续型 ℃ 降水 连续型 mm/s 总人口密度变化(2005—2010年) 连续型 人/km2 总人口密度变化(2010—2015年) 连续型 人/km2 总人口密度变化(2015—2019年) 连续型 人/km2 表 2 Logistic回归模型似然比检验结果
Table 2. Results of logistic regression model likelihood ratio test
模型 -2倍对数似然值 卡方值 显著性水平(p值) AIC值 2005—2010年 2406.166 206.765 0.000 2422.166 2010—2015年 2458.64 53.27 0.000 2486.64 2015—2019年 463.804 43.482 0.000 487.804 表 3 耕地变化的logistic回归模型相关系数
Table 3. Parameters of logistic regression model for cultivated land change
时间段 解释变量 回归系数 标准误差 Wald统计量 显著性水平(p值) 发生比率(OR) 预测精度/% 2005—2010 到最近道路距离 0.011 0.002 39.331 0.000 1.011 66.59 降水 1.750 0.329 28.298 0.000 5.757 DEM 0.848 0.181 21.955 0.000 2.335 温度 0.024 0.011 5.273 0.022 1.025 坡度Ⅲ -1.311 0.577 5.163 0.023 0.27 截距 -1.206 0.574 4.410 0.036 0.299 2010—2015 到最近河流距离 -0.014 0.003 23.603 0.000 0.986 58.06 DEM -0.400 0.188 4.514 0.034 0.670 截距 0.701 0.763 0.846 0.358 2.017 2015—2019 温度 0.174 0.036 23.218 0.000 1.190 62.02 到最近道路距离 0.021 0.005 20.300 0.000 1.022 截距 -3.270 1.758 3.461 0.063 0.038 -
[1] 王静. 土地资源遥感监测与评价方法[M]. 北京: 科学出版社, 2006.
Wang J. Land resources remote sensing monitoring and evaluation method[M]. Beijing: Science Press, 2006. (in Chinese)
[2] 许月卿, 田媛, 孙丕苓. 基于Logistic回归模型的张家口市土地利用变化驱动力及建设用地增加空间模拟研究[J]. 北京大学学报(自然科学版), 2015, 51(5): 955-964. doi: 10.13209/j.0479-8023.2015.109
Xu Y Q, Tian Y, Sun P L. Study on driving forces and spatial simulation of land use change in Zhangjiakou City based on logistic regression model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(5): 955-964. doi: 10.13209/j.0479-8023.2015.109
[3] Li H, Cruse R M, Liu X B, et al. Effects of topography and land use change on gully development in typical Mollisol region of Northeast China[J]. Chinese Geographical Science, 2016, 26(6): 779-788. doi: 10.1007/s11769-016-0837-7
[4] 于佩鑫, 周询, 刘素红, 等. 东北黑土区侵蚀沟遥感影像特征提取与识别[J]. 遥感学报, 2018, 22(4): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201804008.htm
Yu P X, Zhou X, Liu S H, et al. Feature extraction and recognition of erosion gully based on remote sensing image in the black soil region in Northeast China[J]. Journal of Remote Sensing, 2018, 22(4): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201804008.htm
[5] 杨佳佳, 白磊, 吴嵩. 黑龙江典型黑土区土壤侵蚀遥感监测技术研究[J]. 地质与资源, 2019, 28(2): 193-199, 183. doi: 10.3969/j.issn.1671-1947.2019.02.012
Yang J J, Bai L, Wu S. Study on the erosion in typical black soil areas of Heilongjiang province by remote sensing monitoring technology[J]. Geology and Resources, 2019, 28(2): 193-199, 183. doi: 10.3969/j.issn.1671-1947.2019.02.012
[6] 杨佳佳, 张一鹤, 冯雨林, 等. 松嫩平原东部土地利用时空动态变化分析[J]. 地质与资源, 2020, 29(6): 627-634, 602. doi: 10.13686/j.cnki.dzyzy.2020.06.020
Yang J J, Zhang Y H, Feng Y L, et al. Spatiotemporal dynamic change analysis of land use in eastern Songnen Plain[J]. Geology and Resources, 2020, 29(6): 627-634, 602. doi: 10.13686/j.cnki.dzyzy.2020.06.020
[7] 杨佳佳, 林楠, 于秀秀, 等. 东北典型黑土区有机碳遥感定量反演研究[J]. 地质与资源, 2020, 29(4): 357-362. doi: 10.13686/j.cnki.dzyzy.2020.04.008
Yang J J, Lin N, Yu X X, et al. Study on quantitative inversion of remote sensing for organic carbon in the typical black soil areas of Northeast China[J]. Geology and Resources, 2020, 29(4): 357-362. doi: 10.13686/j.cnki.dzyzy.2020.04.008
[8] Kravchenko Y S, Zhang X Y, Liu X B, et al. Mollisols properties and changes in Ukraine and China[J]. Chinese Geographical Science, 2011, 21(3): 257-266. doi: 10.1007/s11769-011-0467-z
[9] 刘焕军, 张小康, 张新乐, 等. 面向土壤分类的高光谱反射特征参数模型[J]. 遥感学报, 2017, 21(1): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701010.htm
Liu H J, Zhang X K, Zhang X L, et al. Hyperspectral reflectance characteristics parameter extraction for soil classification model[J]. Journal of Remote Sensing, 2017, 21(1): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701010.htm
[10] Xu X R, Pei J B, Xu Y D, et al. Soil organic carbon depletion in global Mollisols regions and restoration by management practices: A review[J]. Journal of Soils and Sediments, 2020, 20(3): 1173-1181. doi: 10.1007/s11368-019-02557-3
[11] Zhang Y, Li X J, Gregorich E G, et al. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China[J]. Geoderma, 2018, 330: 204-211. doi: 10.1016/j.geoderma.2018.05.037
[12] Hu W, Shen Q S, Zhai X Y, et al. Impact of environmental factors on the spatiotemporal variability of soil organic matter: A case study in a typical small Mollisol watershed of Northeast China[J]. Journal of Soils and Sediments, 2021, 21(2): 736-747. doi: 10.1007/s11368-020-02863-1
[13] 王济川, 郭志刚. Logistic回归模型: 方法与应用[M]. 北京: 高等教育出版社, 2001.
Wang J C, Guo Z G. Logistic regression models: Methods and application[M]. Beijing: Higher Education Press, 2001.
[14] Das P, Pandey V. Use of logistic regression in land-cover classification with moderate-resolution multispectral data[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(8): 1443-1454. doi: 10.1007/s12524-019-00986-8
[15] Buya S, Tongkumchum P, Owusu B E. Modelling of land-use change in Thailand using binary logistic regression and multinomial logistic regression[J]. Arabian Journal of Geosciences, 2020, 13(12): 437. doi: 10.1007/s12517-020-05451-2
[16] Wang M, Cai L Y, Xu H, et al. Predicting land use changes in northern China using Logistic regression, cellular automata, and a Markov model[J]. Arabian Journal of Geosciences, 2019, 12(24): 790.
[17] Singh R K, Sinha V S P, Joshi P K, et al. A multinomial logistic model-based land use and land cover classification for the South Asian Association for Regional Cooperation nations using moderate resolution imaging spectroradiometer product[J]. Environment, Development and Sustainability, 2021, 23(4): 6106-6127.
[18] 姜广辉, 张凤荣, 陈军伟, 等. 基于logistic回归模型的北京山区农村居民点变化的驱动力分析[J]. 农业工程学报, 2007, 23(5): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200705013.htm
Jiang G H, Zhang F R, Chen J W, et al. Analysis of the driving forces of change of rural residential areas in Beijing mountainous areas based on logistic regression model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(5): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200705013.htm
[19] Guan D J, Zhao Z L, Tan J. Dynamic simulation of land use change based on Logistic-CA-Markov and WLC-CA-Markov models: A case study in Three Gorges reservoir area of Chongqing, China[J]. Environmental Science and Pollution Research, 2019, 26(20): 20669-20688.
[20] Vafaei S, Karim M M, Soltanian S, et al. Simulating the expansion of built-up areas using the models of logistic regression, artificial neural network, and geo-mod in Marivan City, Iran[J]. Journal of the Indian Society of Remote Sensing, 2021, 49(5): 1081-1090.
[21] Wang Q Z, Guan Q Y, Lin J K, et al. Simulating land use/land cover change in an arid region with the coupling models[J]. Ecological Indicators, 2021, 122: 107231.
[22] 赵冬玲, 杜萌, 杨建宇, 等. 基于CA-Markov模型的土地利用演化模拟预测研究[J]. 农业机械学报, 2016, 47(3): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201603039.htm
Zhao D L, Du M, Yang J Y, et al. Simulation and forecast study of land use change based on CA-Markov model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201603039.htm
[23] 孙玮健, 张荣群, 艾东, 等. 基于元胞自动机模型的土地利用情景模拟与驱动力分析[J]. 农业机械学报, 2017, 48(S1): 254-261. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2017S1039.htm
Sun W J, Zhang R Q, Ai D, et al. Driving force analysis and scenarios simulation of land use based on cell automata model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 254-261. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2017S1039.htm
[24] 张之一. 关于黑土分类和分布问题的探讨[J]. 黑龙江八一农垦大学学报, 2005, 17(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJK200501001.htm
Zhang Z Y. Discuss on issue of black soils classification and it's distribution[J]. Journal of Heilongjiang Bayi Agricultural University, 2005, 17(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJK200501001.htm
[25] 张之一. 关于世界黑土分布的探讨[J]. 黑龙江农业科学, 2010(4): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201004022.htm
Zhang Z Y. Discuss on distribution of phaeozem in the world[J]. Heilongjiang Agricultural Sciences, 2010(4): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201004022.htm
[26] 斯科特·梅纳德. 应用logistic回归分析[M]. 李俊秀, 译. 2版. 上海: 格致出版社, 2012: 76-92.
Menard S. Applied logistic regression analysis[M]. Li J X, trans. 2nd ed. Shanghai: Truth&Wisdom Press, 2012: 76-92.
[27] 徐嘉兴, 李钢, 陈国良. 基于logistic回归模型的矿区土地利用演变驱动力分析[J]. 农业工程学报, 2012, 28(20): 247-255. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201220035.htm
Xu J X, Li G, Chen G L. Driving force analysis of land use change based on logistic regression model in mining area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 247-255. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201220035.htm
[28] Pontius Jr R G, Schneider L C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA[J]. Agriculture, Ecosystems&Environment, 2001, 85(1/3): 239-248.
[29] Verburg P H, Van Eck J R R, De Nijs T C M D, et al. Determinants of land-use change patterns in the Netherlands[J]. Environment and Planning B: Planning and Design, 2004, 31(1): 125-150.
-