黑龙江东宁地区季冻土抗压抗剪强度试验研究

刘建宇, 黄伟, 高博, 朱荣利. 黑龙江东宁地区季冻土抗压抗剪强度试验研究[J]. 地质与资源, 2023, 32(5): 592-598. doi: 10.13686/j.cnki.dzyzy.2023.05.009
引用本文: 刘建宇, 黄伟, 高博, 朱荣利. 黑龙江东宁地区季冻土抗压抗剪强度试验研究[J]. 地质与资源, 2023, 32(5): 592-598. doi: 10.13686/j.cnki.dzyzy.2023.05.009
LIU Jian-yu, HUANG Wei, GAO Bo, ZHU Rong-li. EXPERIMENTAL STUDY ON THE COMPRESSIVE AND SHEAR STRENGTH OF SEASONAL FROZEN SOIL IN DONGNING AREA, HEILONGJIANG PROVINCE[J]. Geology and Resources, 2023, 32(5): 592-598. doi: 10.13686/j.cnki.dzyzy.2023.05.009
Citation: LIU Jian-yu, HUANG Wei, GAO Bo, ZHU Rong-li. EXPERIMENTAL STUDY ON THE COMPRESSIVE AND SHEAR STRENGTH OF SEASONAL FROZEN SOIL IN DONGNING AREA, HEILONGJIANG PROVINCE[J]. Geology and Resources, 2023, 32(5): 592-598. doi: 10.13686/j.cnki.dzyzy.2023.05.009

黑龙江东宁地区季冻土抗压抗剪强度试验研究

  • 基金项目:
    中国地质调查局项目"东北边境珲春-东宁地区综合地质调查"(DD20208014、DZ20220402)
详细信息
    作者简介: 刘建宇(1993—),男,从事工程地质水文地质相关工作,通信地址 黑龙江省牡丹江市东安区卧龙街45号,E-mail//79000977@qq.com
    通讯作者: 黄伟(1986—),男,硕士,工程师,从事岩石学矿物学矿床学等地质相关工作,通信地址 黑龙江省牡丹江市东安区卧龙街45号,E-mail//langhuan@yeah.net
  • 中图分类号: P642.1

EXPERIMENTAL STUDY ON THE COMPRESSIVE AND SHEAR STRENGTH OF SEASONAL FROZEN SOIL IN DONGNING AREA, HEILONGJIANG PROVINCE

More Information
  • 以牡丹江市东宁地区土层(粉土、粉质黏土、黏土)为研究对象, 通过工程钻探等技术手段实地采取原状土样, 筛选不同含水率、不同土质的样品, 经过室内试验设置不同负温条件对原状土单轴抗压强度和三轴剪切强度等物理力学性质进行研究.结果显示, 原状土在不同负温条件下冻结后单轴抗压强度随着温度的降低而增大, 黏聚力随着含水率的增加呈指数型增大, 内摩擦角随含水率的增加先增加后趋于稳定; 在试验负温条件下, -20℃为变化界限, 小于-20℃时, 冻结土体的单轴抗压强度随含水率的增加呈现先增加后减小的变化规律, 黏聚力随着冻结温度降低而增大, -10℃、-20℃条件下冻土的内摩擦角有相似的规律, 未随含水率增减发生明显变化, 此时冻土抗剪强度随着冻结温度的降低而增加; 大于-20℃时, 冻结土体的单轴抗压强度随含水率的增加而增加, 黏聚力不随冻结温度降低而增加, 内摩擦角随着冻结温度的降低而增大, 冻土抗剪强度随着冻结温度的降低缓慢增大趋于冰的剪切强度.

  • 加载中
  • 图 1  研究区地质简图及取样位置分布

    Figure 1. 

    图 2  不同负温条件下单轴抗压强度与含水率的关系

    Figure 2. 

    图 3  不同负温条件下黏聚力与含水率的关系

    Figure 3. 

    图 4  不同负温条件下内摩擦角与含水率的关系

    Figure 4. 

    图 5  -10 ℃条件下抗压、抗剪强度与土质的关系

    Figure 5. 

    表 1  土样的基本物理指标

    Table 1.  Basic physical indexes of soil samples

    序号 土质 含水率/% 抗压强度/MPa 黏聚力/MPa 内摩擦角/(°)
    -10 ℃ -20 ℃ -30 ℃ -10 ℃ -16 ℃ -19 ℃ -20 ℃ -30 ℃ -10 ℃ -20 ℃ -22 ℃ -25 ℃ -30 ℃
    1 粉土 14.80 1.33 3.89 7.43 0.17 0.29 0.34 0.38 0.46 28.69 27.80 30.01 35.66 39.03
    2 粉土 15.79 1.98 4.72 7.82 0.17 0.35 0.38 0.46 0.44 26.69 27.80 30.72 37.70 40.03
    3 粉土 16.42 2.36 5.49 8.05 0.19 0.31 0.37 0.52 0.58 32.02 34.40 31.15 37.96 45.54
    4 粉土 17.29 3.28 7.41 8.37 0.26 0.29 0.34 0.61 0.63 34.18 35.60 33.16 38.60 53.26
    5 粉土 21.27 4.43 7.85 9.66 0.39 0.35 0.37 1.07 1.12 35.79 35.20 35.75 42.06 50.69
    6 粉土 23.22 4.84 8.13 10.20 0.49 0.39 0.44 1.36 1.41 33.89 35.30 35.46 43.1 45.83
    7 粉土 31.35 3.90 8.78 11.83 1.07 0.41 0.43 2.97 3.29 31.89 33.20 37.46 44.00 48.81
    8 粉质黏土 15.19 1.28 4.87 7.59 0.25 0.39 0.45 0.41 0.45 28.78 27.90 37.95 43.26 42.18
    9 粉质黏土 16.42 2.36 4.85 8.05 0.19 0.52 0.88 0.52 0.54 29.79 28.90 37.65 43.56 43.62
    10 粉质黏土 16.81 2.58 5.83 8.20 0.28 0.59 1.00 0.56 0.58 32.16 33.50 38.82 46.21 48.24
    11 粉质黏土 17.23 2.82 5.03 8.35 0.42 0.64 1.04 0.60 0.62 32.26 33.60 38.12 46.01 49.38
    12 粉质黏土 24.48 4.97 8.64 10.53 0.57 0.69 0.98 1.56 1.52 35.23 36.70 38.94 45.12 52.85
    13 粉质黏土 29.87 4.39 8.36 11.61 1.24 0.77 1.1 2.62 2.76 34.16 31.40 38.42 46.61 46.22
    14 粉质黏土 34.62 3.20 7.27 12.19 1.38 0.76 1.19 3.83 3.48 35.32 37.50 39.58 46.73 54.00
    15 粉质黏土 35.03 2.08 7.63 12.23 1.48 0.96 1.22 3.94 3.70 36.96 38.50 39.72 47.21 53.44
    16 黏土 22.22 4.66 8.43 9.94 0.41 1.53 2.11 1.21 1.15 32.83 35.40 37.26 44.3 50.98
    17 黏土 22.66 4.75 7.89 10.06 0.46 1.91 2.65 1.27 1.32 34.80 34.20 38.44 43.11 49.25
    18 黏土 23.33 4.85 9.88 10.23 0.59 2.09 2.79 1.37 1.43 33.89 35.30 40.76 47.9 50.83
    19 黏土 24.79 4.75 9.84 10.60 0.58 2.39 3.11 1.61 1.68 34.94 36.40 41.56 48.7 51.42
    20 黏土 32.25 3.50 9.42 11.95 1.15 2.61 3.29 3.19 3.32 36.06 38.60 41.92 48.11 55.58
    测试单位:黑龙江省水利科学研究院.
    下载: 导出CSV
  • [1]

    李海鹏, 杨维好, 黄家会, 等. 试件形状对冻结粉土抗压强度影响的试验研究[J]. 冰川冻土, 2005, 27(6): 920-925. doi: 10.3969/j.issn.1000-0240.2005.06.020

    Li H P, Yang W H, Huang J H, et al. An experimental study of the effect of specimen shape on compressive strength of frozen silt[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 920-925. doi: 10.3969/j.issn.1000-0240.2005.06.020

    [2]

    毛然, 王翠英. 中南地区冻土抗剪强度影响因素研究[J]. 安全与环境工程, 2010, 17(5): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201005028.htm

    Mao R, Wang C Y. Study on the influential factors of frozen soil shear strength of central south region[J]. Safety and Environmental Engineering, 2010, 17(5): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201005028.htm

    [3]

    赵景峰. 冻土抗拉强度与冻温及含水率关系的试验研究[J]. 地质与勘探, 2011, 47(6): 1158-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106026.htm

    Zhao J F. An experimental study on the relationship between tensile strength and temperature and water ratio of frozen soil[J]. Geology and exploration, 2011, 47(6): 1158-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106026.htm

    [4]

    李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4): 1173-1177. doi: 10.3969/j.issn.1000-7598.2012.04.031

    Li S Q, Gao L X, Chai S X. Significance and interaction of factors on mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4): 1173-1177. doi: 10.3969/j.issn.1000-7598.2012.04.031

    [5]

    王儒默, 马芹永. 冻结时间对冻土抗压强度影响的试验分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201901014.htm

    Wang R M, Ma Q Y. Experimental analysis of the influence of freezing time on compressive strength of frozen silty clay[J]. Journal of Anhui University of Science and Technology (Natural Science), 2019, 39(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201901014.htm

    [6]

    张宏. 高温冻土力学特性试验研究[J]. 人民黄河, 2019, 41(8): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201908030.htm

    Zhang H. Experimental research on mechanical characteristics of high-temperature frozen soils[J]. Yellow River, 2019, 41(8): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201908030.htm

    [7]

    黄道良, 林斌. 人工冻土力学性能影响因素敏感性分析[J]. 力学与实践, 2012, 34(4): 63-65, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201204013.htm

    Huang D L, Lin B. Sensitivity analysis on the influence factors of the mechanical properties of the artificial frozen soil[J]. Mechanics in Engineering, 2012, 34(4): 63-65, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201204013.htm

    [8]

    程培峰, 陈景龙, 韩春鹏, 等. 季冻区路基土回弹模量影响因素分析[J]. 公路, 2013(10): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201310042.htm

    Cheng P F, Chen J L, Han C P, et al. Influencing factor analysis of subgrade resilience in the seasonal freezing region[J]. Highway, 2013(10): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201310042.htm

    [9]

    马玉涛. 张家口季冻区公路路基填土的静动力学特性研究[D]. 张家口: 河北建筑工程学院, 2017.

    Ma Y T. Study on static and dynamic mechanical behavior of highway subgrade soil in Zhangjiakou seasonally-frozen area[D]. Zhangjiakou: Hebei University of Architecture, 2017.

    [10]

    房建宏, 陈鑫, 徐安花, 等. 冻融循环对青藏红黏土物理力学性质影响试验研究[J]. 冰川冻土, 2018, 40(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201801008.htm

    Fang J H, Chen X, Xu A H, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201801008.htm

    [11]

    高娟, 廖孟柯, 常丹, 等. 冻结砂土体积变形影响因素的敏感性分析[J]. 冰川冻土, 2018, 40(2): 346-354. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201802016.htm

    Gao J, Liao M K, Chang D, et al. Sensitivity analysis of the factors affecting the volumetric deformation of frozen sandy soil[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 346-354. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201802016.htm

    [12]

    崔宏环, 王文涛, 杨兴然, 等. 季节冻土区正融粉质黏土强度影响因素敏感性分析[J]. 冰川冻土, 2020, 42(3): 899-908. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003017.htm

    Cui H H, Wang W T, Yang X R, et al. Sensitivity analysis of the influencing factors on strength of silty clay in seasonally frozen regions[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 899-908. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003017.htm

    [13]

    王宁. 黑龙江省季节冻土厚度的时空变化及其对气温、土地利用变化的响应[D]. 哈尔滨: 哈尔滨师范大学, 2018: 9-15.

    Wang N. The spatial and temporal variation of seasonal frozen soil thickness in Heilongjiang Province and its response to temperature and land use change[D]. Harbin: Harbin Normal University, 2018: 9-15.

    [14]

    程培峰, 王锐, 韩春鹏. 大兴安岭人工冻土抗压抗剪强度试验研究[J]. 中外公路, 2016, 36(5): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605002.htm

    Cheng P F, Wang R, Han C P. Experimental study on compressive and shear strength of artificial frozen soil of Daxinganling Mountains[J]. Journal of China&Foreign Highway, 2016, 36(5): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605002.htm

    [15]

    陈士威, 林斌. 原状与重塑冻结黏土单轴抗压对比试验[J]. 煤矿安全, 2019, 50(6): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201906015.htm

    Chen S W, Lin B. Contrast test on uniaxial compression of undisturbed and remolded frozen clay[J]. Safety in Coal Mines, 2019, 50(6): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201906015.htm

    [16]

    王锐. 高纬度多年冻土地区路基工后沉降变化规律研究[D]. 哈尔滨: 东北林业大学, 2016: 17.

    Wang R. Study on the roadbed settlement change rule after constructed in permafrost regions of the high altitude[D]. Harbin: Northeast Forestry University, 2016: 17.

    [17]

    贾霄. 天津地区人工冻土力学特性试验及其工程应用[D]. 天津: 天津大学, 2014: 46.

    Jia X. The mechanical properties test of artificial frozen soil and project application in Tianjin[D]. Tianjin: Tianjin University, 2014: 46.

    [18]

    赵文美. 高纬度多年冻土物理力学性质研究[J]. 森林工程, 2015, 31(3): 128-130, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201503031.htm

    Zhao W M. Study on physical and mechanical properties of permafrost at high altitudes[J]. Forest Engineering, 2015, 31(3): 128-130, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201503031.htm

    [19]

    肖海斌. 人工冻土单轴抗压强度与温度和含水率的关系[J]. 岩土工程界, 2008, 11(4): 62-63, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200804018.htm

    Xiao H B. Relationship between uniaxial compressive strength and temperature and water content of artificial frozen soil[J]. Geotechnical Engineering World, 2008, 11(4): 62-63, 76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200804018.htm

    [20]

    蒋代军. 多年冻土地基桩土界面特性及桩基竖向承载性状研究[D]. 兰州: 兰州交通大学, 2019: 139-140.

    Jiang D J. Study on pile-soil interface property and vertical bearing behavior of pile foundation in permafrost[D]. Lanzhou: Lanzhou Jiaotong University, 2019: 139-140.

    [21]

    蒋慎. 冻融循环作用对路基粉质粘土抗剪强度的影响分析[J]. 湖南交通科技, 2017, 43(2): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FLJT201702014.htm

    Jiang S. Analysis of influence of freeze-thaw cycles on shear strength of subgrade silty clay[J]. Hunan Communication Science and Technology, 2017, 43(2): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FLJT201702014.htm

  • 加载中

(5)

(1)

计量
  • 文章访问数:  910
  • PDF下载数:  275
  • 施引文献:  0
出版历程
收稿日期:  2022-05-24
修回日期:  2022-06-27
刊出日期:  2023-10-25

目录