-
摘要:
利用水文地质钻探、同位素技术、水位统测等方法, 分析西露天矿涌水来源, 评价各来源对西露天矿涌水的补给量, 为西露天矿地质灾害评估和矿坑规划利用提供科学依据.结果表明: 西露天矿坑是区域地下水汇集区, 周边地下水向矿坑内径流.周边地区进入西露天矿的总水量为2477.8×104 m3/a, 来源主要为浑河通过北帮第四系含水层的侧向补给和大气降水补给.其中北帮浑河侧向补给的涌水量约1115.7×104 m3/a, 约占45.0%, 大气降水直接降入矿坑水量约997.8×104 m3/a, 约占40.3%.古城子河通过西露天矿西帮侧向补给矿坑的水量约177.9×104 m3/a; 地下水通过西露天矿南帮杨柏河、刘山河古河道等地段侧向径流补给的水量约186.4×104 m3/a; 东帮在东露天矿影响下接近疏干.
Abstract:Through the methods of hydrogeological drilling, isotope technology and water level measurement, the paper analyzes the sources of water inrush in the West Open-Pit Coal Mine and evaluates the water recharge from each source, which provides scientific basis for geological hazard assessment and pit planning and utilization of the mine. The results show that the west open-pit is a regional groundwater gathering area, with runoff from the surrounding groundwater. The total amount of water flowing to open-pit from surrounding areas is 2 477.8×104 m3/a, mainly from the lateral recharge of Hunhe River through the Quaternary aquifer in the north slope of the open-pit, and atmospheric precipitation recharge, among which the water inflow from Hunhe River is about 1115.7×104 m3/a, accounting for 45.0%, and the water amount of atmospheric precipitation directly falling into the mine is about 997.8×104 m3/a, taking up about 40.3%. The water supply of Guchengzi River through the west slope of the open-pit is about 177.9×104 m3/a, while that of groundwater supplied by lateral runoff from the paleochannels of Yangbai River and Liushan River in the south slope of the open-pit is about 186.4×104 m3/a. The east slope is close to draining under the influence of East Open-Pit Mine.
-
Key words:
- West Open-Pit Mine /
- mine water inrush /
- isotope /
- groundwater /
- recharge /
- Liaoning Province
-
-
表 1 西露天矿周边第四系含水层底板高程统计表
Table 1. Floor elevations of Quaternary aquifer around the West Open-Pit Mine
钻孔编号 底板高程/m 钻孔编号 底板高程/m 钻孔编号 底板高程/m 钻孔编号 底板高程/m S1 61.5 S15 69.2 Z07 57.0 Z21 74.1 S2 62.9 S16 76.9 Z08 64.7 Z22 83.8 S3 64.9 S17 62.7 Z09 54.7 Z23 94.7 S4 66.7 S18 59.7 Z10 61.7 Z24 116.0 S5 63.8 S19 57.3 Z11 66.4 Z25 81.5 S6 65.1 S20 67.9 Z12 67.6 Z26 129.3 S7 64.8 S21 77.5 Z13 66.2 Z27 110.5 S8 60.6 S22 62.9 Z14 63.5 Z28 127.6 S9 61.4 Z01 69.8 Z15 90.1 Z29 101.1 S10 67.2 Z02 67.1 Z16 79.6 Z30 108.4 S11 66.4 Z03 66.1 Z17 103.0 Z31 96.2 S12 65.6 Z04 65.6 Z18 77.8 Z32 108.9 S13 67.3 Z05 68.4 Z19 88.1 Z33 104.0 S14 64.4 Z06 64.2 Z20 75.5 Z34 108.2 表 2 同位素样品测试结果
Table 2. Test results of isotope samples
编号 δD/‰ δ18O/‰ 取样位置 编号 δD/‰ δ18O/‰ 取样位置 HQ01 -60 -8.0 古城子河 HQ11 -67 -9.2 地下水 HQ02 -61 -8.0 古城子河 HQ12 -65 -8.8 地下水 HQ03 -66 -9.1 浑河 HQ13 -65 -8.9 地下水 HQ04 -66 -9.0 浑河 HQ14 -66 -9.0 地下水 HQ05 -65 -9.0 浑河 HQ15 -66 -9.0 地下水 HQ06 -64 -8.8 矿坑涌水 HQ16 -66 -9.2 地下水 HQ07 -65 -8.9 矿坑涌水 HQ17 -72 -9.7 地下水 HQ08 -64 -8.7 矿坑涌水 HQ18 -63 -8.9 地下水 HQ09 -64 -8.8 矿坑涌水 HQ19 -64 -9.0 地下水 HQ10 -66 -9.2 地下水 HQ20 -65 -9.0 地下水 表 3 西露天矿历年平均降雨量统计表
Table 3. Average rainfall of the West Open-Pit Mine over the years
年份 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 降水量/mm 1148.6 527.5 864.3 1025.6 537.7 645.5 1046.8 621.7 648.8 728.8 表 4 西露天矿排水量统计表
Table 4. Water drainage of the West Open-Pit Mine
年份 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 年排水量/104 m3 2932.9 1870.0 2506.8 2887.0 1523.3 2105.1 2701.3 2486.1 2157.5 2225.7 -
[1] 孙兆涛. 抚顺西露天矿北帮地质灾害发展规律及其环境影响[D]. 长春: 吉林大学, 2015.
Sun Z T. The development law of geological disasters in the north slope of Fushun West Open Pit and its environmental impact[D]. Changchun: Jilin University, 2015.
[2] 李淑艳. 抚顺市矿山环境地质灾害形成机制与防治对策研究[D]. 沈阳: 煤炭科学研究总院, 2008.
Li S Y. The research of mining environmental geology disaster's forming mechanism and countermeasures of Fushun city[D]. Shenyang: China Coal Research Institute, 2018.
[3] 张丽丽. 抚顺市煤田开采区地质灾害分区评价研究[D]. 长春: 吉林大学, 2014.
Zhang L L. Evaluation of geological disasters of coal-mining areas in Fushun City[D]. Changchun: Jilin University, 2014.
[4] 张东旭. 抚顺西露天矿现状边坡稳定性分析[J]. 露天采矿技术, 2021, 36(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCM202102029.htm
Zhang D X. Slope stability analysis of Fushun West Open-Pit Mine[J]. Opencast Mining Technology, 2021, 36(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCM202102029.htm
[5] 韦忠跟. 抚顺西露天矿北帮E200段边坡蠕变特性与变形预测研究[D]. 沈阳: 煤炭科学研究总院, 2008.
Wei Z G. Creep property and deformation prediction study on West Open Pit E200 north slope of Fushun[D]. Shenyang: China Coal Research Institute, 2008.
[6] 王彤. 抚顺西露天矿北帮边坡动力响应分析[D]. 长春: 吉林大学, 2016.
Wang T. Dynamic response of the north slope of Fushun West Open Pit[D]. Changchun: Jilin University, 2016.
[7] 张明海. 抚顺西露天矿北帮某段边坡变形预测研究[D]. 阜新: 辽宁工程技术大学, 2002.
Zhang M H. The study on deformation predicting of some northern slope of Fushun West Open-Pit[D]. Fuxin: Liaoning Technical University, 2002.
[8] 翟文杰, 钟以章, 姜德录, 等. 抚顺西露天煤矿地质灾害预测[J]. 自然灾害学报, 2006, 15(4): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200604023.htm
Zhai W J, Zhong Y Z, Jiang D L, et al. Prediction of geological disaster in Fushun Xilutian Coal Mine[J]. Journal of Natural Disasters, 2006, 15(4): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200604023.htm
[9] 王永胜, 郭静芸, 董高峰, 等. 辽宁抚顺西露天矿北帮边坡稳定性分析及变形分区[J]. 中国地质灾害与防治学报, 2012, 23(4): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201204016.htm
Wang Y S, Guo J Y, Dong G F, et al. Slope stability evaluation of Fushun West Open-Pit Mine[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(4): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201204016.htm
[10] 王翠珀, 陈跃月. GPS实时监测技术在抚顺西露天矿边坡变形监测中的应用[J]. 地质与资源, 2010, 19(2): 180-183. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9252.shtml
Wang C P, Chen Y Y. Application of GPS real-time monitoring in the slope deformation control of the Western Opencast Mine in Fushun, Liaoning Province[J]. Geology and Resources, 2010, 19(2): 180-183. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9252.shtml
[11] 郭昂青. 内蒙古乌努格吐山铜钼矿露天采场边坡工程地质特征及破坏类型[J]. 地质与资源, 2016, 25(1): 84-91. doi: 10.3969/j.issn.1671-1947.2016.01.015
Guo A Q. Engineering geology of the open pit slope of the Wunugetushan Copper-Molybdenum Mine in Inner Mongolia[J]. Geology and Resources, 2016, 25(1): 84-91. doi: 10.3969/j.issn.1671-1947.2016.01.015
[12] 王洁玉, 张以晨, 汪茜. 长白山北坡边坡危岩体形成机理及危险性评价[J]. 地质与资源, 2010, 19(4): 315-318. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9278.shtml
Wang J Y, Zhang Y C, Wang Q. Mechanism analysis and risk assessment of the dangerous rock mass in the northern slope of Changbai Mountain[J]. Geology and Resources, 2010, 19(4): 315-318. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9278.shtml
[13] 王佳运, 王根龙, 石小亚. 陕西山阳特大型滑坡视向滑移-溃屈破坏力学分析[J]. 中国地质, 2019, 46(2): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902015.htm
Wang J Y, Wang G L, Shi X Y. Mechanical analysis of apparent dip creep-buckling failure of Shanyang super large-scale rockslide in Shaanxi Province[J]. Geology in China, 2019, 46(2): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902015.htm
[14] 李小龙, 王雪冬. 山东废弃石灰岩矿山地质环境特征与治理恢复探索[J]. 地质与资源, 2018, 27(1): 89-92. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8439.shtml
Li X L, Wang X D. Geological environment characteristics of abandoned limestone mines in Shandong Province: Management and restoration exploration[J]. Geology and Resources, 2018, 27(1): 89-92. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8439.shtml
[15] 申力. 雨季露天煤矿边坡岩体变形破坏的调查与分析[J]. 露天采煤技术, 1998(S1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCM1998S1009.htm
Shen L. Investigation and analysis on deformation and failure of slope rock mass in open pit coal mine in rainy season[J]. Open Pit Mining Technology, 1998(S1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCM1998S1009.htm
[16] 于子国. 抚顺西露天矿北帮边坡稳定性分析与防治[D]. 阜新: 辽宁工程技术大学, 2005.
Yu Z G. Fondle the agreeable the northern slope of Fushun West Open-Pit stability to analyze with the prevention and manage[D]. Fuxin: Liaoning Technical University, 2005.
[17] 王明, 赵玉成, 刘家成, 等. 渗流作用下露天煤矿边坡稳定性数值模拟研究[J]. 武汉科技大学学报, 2014, 37(4): 273-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YEKJ201404008.htm
Wang M, Zhao Y C, Liu J C, et al. Numerical simulation of side slope stability of opencast coal mine under the seepage flow[J]. Journal of Wuhan University of Science and Technology, 2014, 37(4): 273-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YEKJ201404008.htm
[18] 徐晨栋, 苑康泽, 郭子坤, 等. 清子高速某工程滑坡诱发机制及治理模拟[J]. 地质与资源, 2020, 29(2): 196-201. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10192.shtml
Xu C D, Yuan K Z, Guo Z K, et al. Inducement mechanism and treatment simulation of an engineering landslide on Qingzi expressway[J]. Geology and Resources, 2020, 29(2): 196-201. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10192.shtml
[19] 张大伟. 抚顺西露天矿北帮边坡在地下开采条件下稳定性研究[D]. 徐州: 中国矿业大学, 2019.
Zhang D W. Study on stability of north slope of Fushun West Open-Pit Mine under underground mining conditions[D]. Xuzhou: China University of Mining and Technology, 2019.
[20] 王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育出版社, 2008: 119-120.
Wang H T. Dynamics of fluid flow and contaminant transport in porous media[M]. Beijing: Higher Education Press, 2008: 119-120.
-