潜江凹陷页岩岩相对页岩油储层的控制作用

云念寒, 王芙蓉, 侯宇光, 曾宏斌, 杨荣岩. 潜江凹陷页岩岩相对页岩油储层的控制作用[J]. 地质与资源, 2023, 32(6): 750-761. doi: 10.13686/j.cnki.dzyzy.2023.06.012
引用本文: 云念寒, 王芙蓉, 侯宇光, 曾宏斌, 杨荣岩. 潜江凹陷页岩岩相对页岩油储层的控制作用[J]. 地质与资源, 2023, 32(6): 750-761. doi: 10.13686/j.cnki.dzyzy.2023.06.012
YUN Nian-han, WANG Fu-rong, HOU Yu-guang, ZENG Hong-bin, YANG Rong-yan. CONTROL OF SHALE LITHOFACIES ON THE SHALE OIL RESERVOIR IN QIANJIANG SAG[J]. Geology and Resources, 2023, 32(6): 750-761. doi: 10.13686/j.cnki.dzyzy.2023.06.012
Citation: YUN Nian-han, WANG Fu-rong, HOU Yu-guang, ZENG Hong-bin, YANG Rong-yan. CONTROL OF SHALE LITHOFACIES ON THE SHALE OIL RESERVOIR IN QIANJIANG SAG[J]. Geology and Resources, 2023, 32(6): 750-761. doi: 10.13686/j.cnki.dzyzy.2023.06.012

潜江凹陷页岩岩相对页岩油储层的控制作用

  • 基金项目:
    国家自然科学基金委员会重点项目"陆相页岩油在基质-裂缝体系中的多尺度运移机理研究"(41830431);国家自然科学基金项目"有机质石墨化对南方下古生界海相页岩有机质孔隙结构的影响"(41772143);科学技术部重大专项资助项目"潜江与泌阳凹陷页岩油勘探开发目标评价"(2017ZX05049-005)
详细信息
    作者简介: 云念寒(1999-), 女, 硕士研究生, 主要从事非常规油气地质研究, 通信地址湖北省武汉市洪山区关山街道鲁磨路388号, E-mail//2578085650@qq.com
    通讯作者: 王芙蓉(1979-), 女, 博士, 副教授, 主要从事储层沉积和成岩作用等方面的研究工作, 通信地址湖北省武汉市洪山区关山街道鲁磨路388号, E-mail//wfr777@163.com
  • 中图分类号: P618.13

CONTROL OF SHALE LITHOFACIES ON THE SHALE OIL RESERVOIR IN QIANJIANG SAG

More Information
  • 在岩心观察与岩石薄片鉴定的基础上, 结合XRD技术、氩离子抛光扫描电镜、低温氮气吸附实验、高压压汞测试和岩石热解分析, 对江汉盆地潜江凹陷潜江组页岩储层的岩石矿物组成、孔渗和孔隙结构、地球化学特征等进行分析. 研究表明, 潜江凹陷潜江组页岩主要矿物组成为白云石和黏土矿物, 主要发育块状灰质泥岩相、纹层状灰质泥岩相、块状云质泥岩相、纹层状云质泥岩相以及块状泥质云岩相和纹层状泥质云岩相. 页岩储层主要发育碳酸盐矿物晶间孔和黏土矿物层间孔, 孔径主要分布在2~200 nm, 孔隙度多低于20%, 渗透率主要为0.1×10-3~100×10-3 μm2, 为低孔低渗-特低渗储层. 其中黏土矿物有利于页岩储层微孔和介孔的发育, 白云石有利于大孔发育, 且生物成因的白云石有助于有机碳的富集和滞留烃的赋存. 储层整体表现为纹层状页岩比块状页岩具有相对较高的孔径、较好的孔隙连通性和含油性, 尤其在纹层状泥质云岩相中, 孔隙度介于5%~15%, 渗透率处于1×10-3~10×10-3 μm2, 主要孔径为50~200 nm, 连通孔径主要为50~100 nm, TOC含量在1%~3%, S1含量分布在5×10-3~35×10-3, OSI值多处于400×10-3, 是潜江组页岩油储层的优势岩相.

  • 加载中
  • 图 1  潜江凹陷构造位置及取样井位图(据文献[27]修改)

    Figure 1. 

    图 2  样品岩相划分散点图

    Figure 2. 

    图 3  样品孔隙结构

    Figure 3. 

    图 4  页岩扫描电镜图

    Figure 4. 

    图 5  样品全孔径分布曲线

    Figure 5. 

    图 6  样品抽提前后氮气吸附曲线与进汞量曲线

    Figure 6. 

    图 7  样品孔隙与矿物含量相关性散点图

    Figure 7. 

    图 8  样品地球化学参数与不同矿物含量分布相关性散点图

    Figure 8. 

    图 9  潜江凹陷潜34-10韵律综合柱状图

    Figure 9. 

    表 1  样品矿物组分及地球化学特征

    Table 1.  Mineral compositions and geochemical characteristics of shale samples

    测试项目 BYY2井 BX7井
    石英/% 5.4~26.3/15.42(18) 4.0~15.6/9.3(19)
    钾长石/% 0.0~2.8/0.23(18) 0.0~4.4/1.0(19)
    斜长石/% 6.3~11.7/9.05(18) 2.0~5.3/4.0(19)
    方解石/% 2.2~39.1/14.16(18) 12.9~42.1/22.3(19)
    白云石/% 5.0~66.5/44.89(18) 6.3~57.9/29.9(19)
    黏土矿物/% 5.4~26.3/15.42(18) 10.5~34.9/25.5(19)
    硬石膏/% 0.0~2.2/0.46(18) 0.0~0.9/0.3(19)
    黄铁矿/% 0.0~9.2/4.83(18) 5.6~10.5/7.7(19)
    石盐/% 0.0~10.0/1.81(18) /
    钙芒硝/% 0.0~15.2/1.99(18) /
    脆性指数/% 59.6~87.5/75.26(18) 56.0~81.7/66.5(19)
    TOC/% 1.03~2.56/1.80(18) 0.32~2.58/1.39(19)
    S1/10-3 3.36~30.46/11.74(18) 1.18~6.50/4.21(19)
    OSI/10-3 211.32~1350.49/665.94(18) 2.17~527.96/80.36(19)
    表中数据意义为:最小值~最大值/平均值(样品数).
    下载: 导出CSV

    表 2  样品不同岩相孔渗数据统计表

    Table 2.  Porosity and permeability data of shale samples in different lithofacies

    岩相 孔隙度/% 渗透率/10-3 μm2
    块状云质泥岩 3.7 534
    块状云质泥岩 5.0 40.1
    块状云质泥岩 4.2 0.212
    块状云质泥岩 6.2 0.062
    块状云质泥岩 2.1 0.063
    块状泥质云岩 9.0 297
    块状泥质云岩 9.0 1.06
    块状泥质云岩 5.7 0.059
    块状灰质泥岩 8.2 15.8
    块状灰质泥岩 5.2 1.63
    纹层状泥质云岩 12.5 6.95
    纹层状泥质云岩 4.1 0.941
    纹层状云质泥岩 20.0 0.229
    纹层状云质泥岩 8.0 1.21
    纹层状泥质云岩 4.1 0.941
    下载: 导出CSV

    表 3  样品不同岩相含油性数据统计表

    Table 3.  Oil-bearing property data of shale samples in different lithofacies

    岩相 TOC/% S1/10-3 OSI/10-3
    块状灰质泥岩 1.14~1.56/1.39(4) 1.86~5.11/3.63(4) 135.766~340.667/260.235(4)
    块状泥质云岩 1.24~1.84/1.65(8) 4.46~6.22/5.43(8) 297.727~368.047/330.193(8)
    块状云质泥岩 0.93~2.24/1.38(3) 3.98~5.23/4.71(3) 233.482~527.957/389.187(3)
    纹层状灰质泥岩 1.32~1.76/1.56(3) 3.36~9.32/6.60(3) 211.321~706.061/1.56440.642(3)
    纹层状泥质云岩 1.03~2.56/1.90(7) 6.90~30.46/14.71(7) 357.513~1350.485/806.321(7)
    纹层状云质泥岩 1.79/1.79(1) 6.43/6.43(1) 359.218/359.218(1)
    表中数据意义为:最小值~最大值/平均值(样品数).
    下载: 导出CSV
  • [1]

    Dapples E C, Krumbein W C, Sloss L L. Tectonic control of lithologic associations[J]. AAPG Bulletin, 1948, 32(10): 1924-1947.

    [2]

    张顺, 刘惠民, 陈世悦, 等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报, 2017, 91(5): 1108-1119. doi: 10.3969/j.issn.0001-5717.2017.05.011

    Zhang S, Liu H M, Chen S Y, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119. doi: 10.3969/j.issn.0001-5717.2017.05.011

    [3]

    Wang G C, Carr T R. Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin[J]. Mathematical Geosciences, 2012, 44(8): 975-1004. doi: 10.1007/s11004-012-9421-6

    [4]

    Jacobi J, Gladkikh M, Lecompte B, et al. Integrated petrophysical evaluation of shale gas reservoirs[C]//CIPC/SPE Gas Technology Symposium 2008 Joint Conference. Calgary: OnePetro, 2008.

    [5]

    Mitra A, Warrington D, Sommer A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals[C]//SPE Western Regional Meeting. Anaheim: OnePetro, 2010.

    [6]

    Milliken K L, Esch W L, Reed R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578. doi: 10.1306/12011111129

    [7]

    Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the Barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. doi: 10.1306/04261110116

    [8]

    Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. doi: 10.1306/03281110162

    [9]

    Bloch J D. Mud and mudstones: introduction and overview[J]. Eos, 2005, 86(14): 145. doi: 10.1029/2005EO140006

    [10]

    冯增昭. 从定量岩相古地理学谈华南地区海相地层油气勘探[J]. 古地理学报, 2005, 7(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501000.htm

    Feng Z Z. Discussion on petroleum exploration of marine strata in South China from quantitative lithofacies palaeogeography[J]. Journal of Palaeogeography, 2005, 7(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501000.htm

    [11]

    沈骋, 任岚, 赵金洲, 等. 页岩岩相组合划分标准及其对缝网形成的影响——以四川盆地志留系龙马溪组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 98-106, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101010.htm

    Shen C, Ren L, Zhao J Z, et al. Division of shale lithofacies associations and their impact on fracture network formation in the Silurian Longmaxi Formation, Sichuan Basin[J]. Oil&Gas Geology, 2021, 42(1): 98-106, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101010.htm

    [12]

    王圣柱. 准噶尔盆地博格达地区中二叠统芦草沟组岩相类型及页岩油储集特征[J]. 大庆石油地质与开发, 2021, 40(1): 1-16, doi:10.19597/j.issn.1000-3754.201912017.

    Wang S Z. Lithofacies types and shale-oil accumulating characteristics of Middle Permian Lucaogou Formation in Bogda area of Junggar Basin[J]. Petroleum Geology&Oilfield Development in Daqing, 2021, 40(1): 1-16, doi:10.19597/j.issn.1000-3754.201912017.

    [13]

    王勇, 王学军, 宋国奇, 等. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J]. 石油勘探与开发, 2016, 43(5): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605005.htm

    Wang Y, Wang X J, Song G Q, et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605005.htm

    [14]

    徐兴友, 刘卫彬, 白静, 等. 松辽盆地南部青山口组一段页岩油富集地质特征及资源潜力[J]. 地质与资源, 2021, 30(3): 296-305, doi:10.13686/j.cnki.dzyzy.2021.03.011.

    Xu X Y, Liu W B, Bai J, et al. Enrichment characteristics and resource potential of shale oil in the first member of Qingshankou Formation in Southern Songliao Basin[J]. Geology and Resources, 2021, 30(3): 296-305, doi:10.13686/j.cnki.dzyzy.2021.03.011.

    [15]

    李士超, 杨建国, 柳波, 等. 松辽盆地三肇凹陷青山口组一段泥页岩岩石学特征及岩相划分——以松页油3井为例[J]. 地质与资源, 2021, 30(3): 317-324, 295, doi:10.13686/j.cnki.dzyzy.2021.03.013.

    Li S C, Yang J G, Liu B, et al. Petrology and lithofacies of shale from the first member of Qingshankou formation in Sanzhao Sag, Songliao Basin: a case study of SYY-3 Well[J]. Geology and Resources, 2021, 30(3): 317-324, 295, doi:10.13686/j.cnki.dzyzy.2021.03.013.

    [16]

    柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm

    Liu B, Shi J X, Fu X F, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm

    [17]

    Iqbal M A, Rezaee R, Smith G, et al. Shale lithofacies controls on porosity and pore structure: An example from Ordovician Goldwyer Formation, Canning Basin, Western Australia[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103888. doi: 10.1016/j.jngse.2021.103888

    [18]

    Xu S, Hao F, Shu Z G, et al. Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 2020, 193: 104271. doi: 10.1016/j.jseaes.2020.104271

    [19]

    孙中良, 王芙蓉, 何生, 等. 潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J]. 深圳大学学报(理工版), 2019, 36(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903010.htm

    Sun Z L, Wang F R, He S, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang depression[J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903010.htm

    [20]

    Huang C J, Hinnov L. Evolution of an Eocene-Oligocene saline lake depositional system and its controlling factors, Jianghan Basin, China[J]. Journal of Earth Science, 2014, 25(6): 959-976. doi: 10.1007/s12583-014-0499-2

    [21]

    李乐, 刘爱武, 漆智先, 等. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征[J]. 地球科学, 2020, 45(2): 602-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002019.htm

    Li L, Liu A W, Qi Z X, et al. Pore Structure characteristics of shale reservoir of the lower Qian 4 Member in the Wangchang anticline of the Qianjiang sag[J]. Earth Science, 2020, 45(2): 602-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002019.htm

    [22]

    徐二社, 陶国亮, 李志明, 等. 江汉盆地潜江凹陷盐间页岩油储层不同岩相微观储集特征——以古近系潜江组三段4亚段10韵律为例[J]. 石油实验地质, 2020, 42(2): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202002006.htm

    Xu E S, Tao G L, Li Z M, et al. Microscopic reservoir characteristics of different lithofacies from inter-salt shale oil reservoir in Qianjiang Sag, Jianghan Basin: A case study of Paleogene Eq34-10 rhythm[J]. Petroleum Geology&Experiment, 2020, 42(2): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202002006.htm

    [23]

    刘心蕊, 吴世强, 陈凤玲, 等. 江汉盆地潜江凹陷潜江组盐间页岩油储层特征研究——以潜34-10韵律为例[J]. 石油实验地质, 2021, 43(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202102010.htm

    Liu X R, Wu S Q, Chen F L, et al. Characteristics of reservoirs for inter-salt shale oil of Qianjiang Formation, Qianjiang Sag, Jianghan Basin: A case study of the Eq34-10 rhythm[J]. Petroleum Geology&Experiment, 2021, 43(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202102010.htm

    [24]

    Wang Z X, Zheng Y H, Chen F L, et al. Biomarker geochemistry of Eq34-10 cyclothem shale in Qianjiang Depression of the Jianghan salt lake facies basin[J]. Petroleum Science and Technology, 2018, 36(2): 148-153. doi: 10.1080/10916466.2017.1411947

    [25]

    Hou Y G, Wang F R, He S, et al. Properties and shale oil potential of saline lacustrine shales in the Qianjiang Depression, Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 86: 1173-1190. doi: 10.1016/j.marpetgeo.2017.07.008

    [26]

    沈娟, 李小平, 安生婷, 等. 四川盆地志留系龙马溪组页岩储集空间及矿物组成特征[J]. 地质与资源, 2017, 26(6): 590-595, doi:10.13686/j.cnki.dzyzy.2017.06.010.

    Shen J, Li X P, An S T, et al. Reservoir space and mineral composition of the shale from Silurian Longmaxi Formation in Sichuan Basin[J]. Geology and Resources, 2017, 26(6): 590-595, doi:10.13686/j.cnki.dzyzy.2017.06.010.

    [27]

    方志雄, 陈开远, 陈凤玲, 等. 江汉盆地盐湖沉积充填模式[M]. 北京: 石油工业出版社, 2006.

    Fang Z X, Chen K Y, Chen F L, et al. Filling models of Jianghan salt lake basin[M]. Beijing: Petroleum Industry Press, 2006.

    [28]

    肖枫. 潜江凹陷潜江组盐间页岩储层特征研究——以潜3410韵律和潜40中5韵律为例[D]. 荆州: 长江大学, 2017.

    Xiao F. Study on the characteristics of salt shale reservoir in Qianjiang Formation in Qianjiang Sag: A case study of the 10th rhythm of Eq34 and the 5th rhythm of middle Eq40[D]. Jingzhou: Yangtze University, 2017.

    [29]

    陈晨, 姜在兴, 孔祥鑫, 等. 潜江凹陷潜江组盐间细粒岩沉积特征及其对页岩含油性的控制[J]. 地学前缘, 2021, 28(5): 421-435, doi:10.13745/j.esf.sf.2020.12.8.

    Chen C, Jiang Z X, Kong X X, et al. Sedimentary characteristics of intersalt fine-grained sedimentary rocks and their control on oil-bearing ability of shales in the Qianjiang Formation, Qianjiang Sag[J]. Earth Science Frontiers, 2021, 28(5): 421-435, doi:10.13745/j.esf.sf.2020.12.8.

    [30]

    Sun M D, Zhang L H, Hu Q H, et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM[J]. Marine and Petroleum Geology, 2020, 112: 104101. doi: 10.1016/j.marpetgeo.2019.104101

    [31]

    孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京: 中国地质大学, 2020, doi: 10.27493/d.cnki.gzdzy.2020.000043.

    Kong X X. Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences, 2020, doi: 10.27493/d.cnki.gzdzy.2020.000043.

    [32]

    汪品先. 古海洋学研究进展——第四届国际古海洋学会议(ICP-IV)介绍[J]. 海洋地质动态, 1993, 9(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT199304001.htm

    Wang P X. Progress in paleoceanography research: Introduction to the Fourth International Conference on Paleoceanography (ICP-IV)[J]. Marine Geology Frontiers, 1993, 9(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT199304001.htm

    [33]

    吴世强, 陈凤玲, 姜在兴, 等. 江汉盆地潜江凹陷古近系潜江组白云岩成因[J]. 石油与天然气地质, 2020, 41(1): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001019.htm

    Wu S Q, Chen F L, Jiang Z X, et al. Origin of Qianjiang Formation dolostone in Qianjiang Sag, Jianghan Basin[J]. Oil&Gas Geology, 2020, 41(1): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001019.htm

    [34]

    孙中良, 王芙蓉, 侯宇光, 等. 盐湖页岩有机质富集主控因素及模式[J]. 地球科学, 2020, 45(4): 1375-1387. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004020.htm

    Sun Z L, Wang F R, Hou Y G, et al. Main controlling factors and modes of organic matter enrichment in salt lake shale[J]. Earth Science, 2020, 45(4): 1375-1387. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004020.htm

  • 加载中

(9)

(3)

计量
  • 文章访问数:  919
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2022-08-01
修回日期:  2022-11-24
刊出日期:  2023-12-25

目录