PREDICTION METHODS OF ADVANTAGEOUS PATHWAYS OF HYDROCARBON MIGRATION BY OIL-SOURCE FAULT AND ITS APPLICATION
-
摘要:
在油源断裂厘定及其输导油气优势路径控制因素分析的基础上, 利用三维地震和测井、录井资料, 对油源断裂活动性优势路径、内部岩性优势路径和断面油气势能优势路径进行研究, 综合预测油源断裂输导油气优势路径. 通过加权赋值计算油源断裂输导油气优势路径综合评价参数, 确定油源断裂附近油气成藏有利范围. 利用该方法预测渤海湾盆地冀中拗陷廊固凹陷大柳泉地区F3油源断裂输导油气优势路径, 结果表明: F3断裂共发育3个活动性优势路径、2个内部岩性优势路径和6个断面油气势能优势路径. 油源断裂输导油气优势路径综合评价参数大于1.65的范围为F3断裂附近油气成藏有利范围, 与研究区目前已探明油气分布相吻合. 表明该方法用于油源断裂输导油气优势路径预测是可行的, 有助于寻找油气勘探有利目标.
Abstract:Based on the determination of oil-source fault and analysis of its controlling factors for advantageous pathways of hydrocarbon migration, the 3D seismic, well logging and mud logging data are used to study the advantage pathways on the parts of oil-source fault activity, internal lithology and hydrocarbon potential field, and then to comprehensively predict the advantage pathway of oil-source fault. The comprehensive evaluation parameters of advantageous pathways of hydrocarbon migration by oil-source fault are calculated by weighted assignment to determine the favorable range of hydrocarbon accumulation near the oil-source fault. The method is used to predict the advantageous pathways of hydrocarbon migration by F3 oil-source fault in Daliuquan area of Langgu Sag in Mid-Hebei Depression, Bohai Bay Basin. The results show that there are 11 advantageous pathways developed in F3 fault, including 3 of activity, 2 of internal lithology and 6 of section hydrocarbon potential. The favorable hydrocarbon accumulation area near the F3 fault is restricted by the comprehensive evaluation parameter greater than 1.65, which is consistent with the proven hydrocarbon distribution in the study area, indicating that the method is feasible for the prediction of advantageous pathways for hydrocarbon migration in oil-source fault, and helpful for favorable oil-gas target searching.
-
-
[1] 蒋有录, 刘培, 宋国奇, 等. 渤海湾盆地新生代晚期断层活动与新近系油气富集关系[J]. 石油与天然气地质, 2015, 36(4): 525-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504002.htm
Jiang Y L, Liu P, Song G Q, et al. Late Cenozoic faulting activities and their influence upon hydrocarbon accumulations in the Neogene in Bohai Bay Basin[J]. Oil&Gas Geology, 2015, 36(4): 525-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504002.htm
[2] 王冠民, 熊周海, 张健, 等. 渤海湾盆地渤中凹陷油藏断裂特征及对成藏的控制作用[J]. 石油与天然气地质, 2017, 38(1): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701008.htm
Wang G M, Xiong Z H, Zhang J, et al. Characterization of fault system and its control on reservoirs in the Bozhong Sag, Bohai Bay Basin[J]. Oil&Gas Geology, 2017, 38(1): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701008.htm
[3] Xu G S, Ma R L, Gong D Y, et al. Features of the fault system and its relationship with migration and accumulation of hydrocarbon in Liaodong Bay[J]. Petroleum Science, 2011, 8(3): 251-263. doi: 10.1007/s12182-011-0142-0
[4] 吴智平, 陈伟, 薛雁, 等. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 2010, 84(4): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm
Wu Z P, Chen W, Xue Y, et al. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 2010, 84(4): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm
[5] Choi J H, Edwards P, Ko K, et al. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
[6] 陈伟, 吴智平, 侯峰, 等. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报, 2010, 31(5): 774-780. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201005014.htm
Chen W, Wu Z P, Hou F, et al. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 2010, 31(5): 774-780. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201005014.htm
[7] 罗群, 庞雄奇, 姜振学. 一种有效追踪油气运移轨迹的新方法——断面优势运移通道的提出及其应用[J]. 地质论评, 2005, 51(2): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200502008.htm
Luo Q, Pang X Q, Jiang Z X. A new method for effective trace petroleum migration path: Concept of fault section dominant migrating channel and its application[J]. Geological Review, 2005, 51(2): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200502008.htm
[8] 孙同文, 付广, 吕延防, 等. 南堡1号构造中浅层油气富集主控因素分析[J]. 天然气地球科学, 2014, 25(7): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201407011.htm
Sun T W, Fu G, Lv Y F, et al. Main controlling factors on the hydrocarbon accumulation in the middle-shallow layer of 1st structure, Nanpu Sag[J]. Natural Gas Geoscience, 2014, 25(7): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201407011.htm
[9] Hooper E C D. Fluid migration along growth faults in compacting sediments[J]. Journal of Petroleum Geology, 1991, 14(S1): 161-180. doi: 10.1111/j.1747-5457.1991.tb00360.x
[10] 付晓飞, 方德庆, 吕延防, 等. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学——中国地质大学学报, 2005, 30(3): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503008.htm
Fu X F, Fang D Q, Lv Y F, et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(3): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503008.htm
[11] Hesthammer J, Johansen T E S, Watts L. Spatial relationships within fault damage zones in sandstone[J]. Marine and Petroleum Geology, 2000, 17(8): 873-893.
[12] 庄新兵, 邹华耀, 滕长宇. 新构造运动期断裂活动对油气的控制作用——以渤中地区为例[J]. 中国矿业大学学报, 2012, 41(3): 452-459. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203020.htm
Zhuang X B, Zou H Y, Teng C Y. Controlling of hydrocarbons by neotectonics and tectonics fault activities: A case study of Bozhong area[J]. Journal of China University of Mining&Technology, 2012, 41(3): 452-459. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203020.htm
[13] 邹华耀, 周心怀, 鲍晓欢, 等. 渤海海域古近系、新近系原油富集/贫化控制因素与成藏模式[J]. 石油学报, 2010, 31(6): 885-893, 899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006002.htm
Zou H Y, Zhou X H, Bao X H, et al. Controlling factors and models for hydrocarbon enrichment/depletion in Paleogene and Neogene, Bohai Sea[J]. Acta Petrolei Sinica, 2010, 31(6): 885-893, 899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006002.htm
[14] 娄国泉. 高邮凹陷断裂对始新统油气成藏的控制作用[J]. 石油天然气学报, 2011, 33(1): 1-5. doi: 10.3969/j.issn.1000-9752.2011.01.001
Lou G Q. Control of faults on Eocene hydrocarbon accumulation in Gaoyou depression of Subei Basin[J]. Journal of Oil and Gas Technology, 2011, 33(1): 1-5. doi: 10.3969/j.issn.1000-9752.2011.01.001
[15] 张德梅, 王桂萍, 娄宪刚, 等. 测井曲线组合法求取泥质含量探讨[J]. 测井技术, 2011, 35(4): 358-362. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104018.htm
Zhang D M, Wang G P, Lou X G, et al. On calculating the shale content with log curve combining method[J]. Well Logging Technology, 2011, 35(4): 358-362. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104018.htm
[16] 刘之的, 杨双定, 刘有霞, 等. 南梁油田长4+5储层泥质含量计算方法[J]. 西安石油大学学报(自然科学版), 2015, 30(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201502004.htm
Liu Z D, Yang S D, Liu Y X, et al. Calculation method of shale content of Chang 4+5 reservoir in Nanliang Oilfield[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201502004.htm
[17] Yielding G, Freeman B, Needham D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917.
[18] 杨智, 何生, 王锦喜, 等. 断层泥比率(SGR)及其在断层侧向封闭性评价中的应用[J]. 天然气地球科学, 2005, 16(3): 347-351. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200503019.htm
Yang Z, He S, Wang J X, et al. Shale gouge ratio and its application in the fault seal estimation across the faulted zone[J]. Natural Gas Geoscience, 2005, 16(3): 347-351. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200503019.htm
[19] 王超, 付广, 董英洁, 等. 基于SGR算法的断层侧向封闭性评价方法改进及其应用[J]. 地质学报, 2017, 91(7): 1641-1650. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201707016.htm
Wang C, Fu G, Dong Y J, et al. SGR algorithm-based improvement of fault lateral sealing evaluation method and its application[J]. Acta Geologica Sinica, 2017, 91(7): 1641-1650. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201707016.htm
[20] 武凤良. 应用测井、地震资料进行地层压实校正的方法[J]. 石油地球物理勘探, 1989, 24(1): 68-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ198901007.htm
Wu F L. The method for making stratigraphic compaction correction with the use of logging and seismic data[J]. Oil Geophysical Prospecting, 1989, 24(1): 68-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ198901007.htm
[21] 张廷山, 张志诚, 伍坤宇. 滇黔北地区地层压实恢复及沉积速率反演[J]. 岩性油气藏, 2016, 28(5): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605012.htm
Zhang T S, Zhang Z C, Wu K Y. Restoration of formation compaction and inversion of deposition rate in Dianqianbei exploration area[J]. Lithologic Reservoirs, 2016, 28(5): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605012.htm
-