PETROGENESIS OF THE EARLY JURASSIC TRACHYANDESITE IN WUFENG AREA OF YANBIAN, JILIN PROVINCE
-
摘要:
以吉林省延边五凤地区粗面安山岩为对象, 开展岩石学、LA-ICP-MS锆石U-Pb年代学和全岩地球化学研究, 查明其SiO2含量为58.33%~61.36%, K2O含量1.61~3.28%, 全碱含量为6.77%~10%, 属于中钾—高钾钙碱性系列. 岩浆成因锆石206Pb/238U加权平均年龄为175.52±2.7 Ma, 与早侏罗世古太平洋板块俯冲时间一致. 岩石相对富集K、Ba、Rb等大离子亲石元素和Th、U等强不相容元素, 亏损Nb、Ta、Ti等高场强元素, LREE/HREE比值较高, 具有轻稀土富集、重稀土亏损的特征, 表明岩浆可能源于地幔部分熔融, 其源区受到俯冲的壳源物质交代. 研究认为粗面安山岩形成于大洋俯冲系统的活动大陆边缘, 属于早侏罗世古太平洋板块俯冲的岩浆响应.
Abstract:Study on the petrology, LA-ICP-MS zircon U-Pb dating and whole rock geochemistry of the trachyandesite in Wufeng area of Yanbian, Jilin Province in Northeast China, shows that the SiO2 content is 58.33%-61.36%, K2O content 1.61%-3.28% and total alkali content 6.77%-10%, belonging to the medium potassium-high potassium calc-alkaline series. The weighted mean age of magmatic zircon 206Pb/238U is 175.52±2.7 Ma, which is consistent with the subduction time of Early Jurassic paleo-Pacific plate. The trachyandesite is characterized by relative enrichment of LILEs(K, Ba and Rb) and strongly incompatible elements (Th and U), and depletion of HFSEs (Nb, Ta and Ti), with high LREE/HREE ratio, and enriched LREEs and depleted HREEs, indicating that the magma may originate from the partial melting of mantle and its source area is metasomatized by the subducted shell source materials. From the above, it is believed that the trachyandesite was formed in the active continental margin of oceanic subduction system and was the magmatic response to the subduction of Early Jurassic paleo-Pacific plate.
-
-
表 1 五凤矿区粗面安山岩LA-ICP-MS锆石U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb dating results of the trachyandesite from Wufeng orefield
测点序号 同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 20140512L04 0.0494 0.0016 0.1940 0.0055 0.0285 0.0005 165 37 180 5 181 3 20140512L05 0.0500 0.0012 0.1903 0.0038 0.0276 0.0004 193 21 177 3 176 3 20140512L07 0.0506 0.0046 0.1815 0.0161 0.0261 0.0006 220 154 169 14 166 4 20140512L08 0.0506 0.0014 0.2008 0.0048 0.0288 0.0005 222 28 186 4 183 3 20140512L10 0.0500 0.0014 0.1889 0.0047 0.0274 0.0004 195 29 176 4 174 3 20140512L11 0.0503 0.0018 0.1885 0.0062 0.0272 0.0005 208 46 175 5 173 3 20140512L13 0.0493 0.0014 0.1907 0.0049 0.0281 0.0005 161 31 177 4 179 3 20140512L18 0.0503 0.0012 0.1920 0.0039 0.0277 0.0004 209 21 178 3 176 3 20140512L19 0.0501 0.0017 0.1903 0.0058 0.0276 0.0005 198 41 177 5 175 3 20140512L20 0.0510 0.0016 0.1883 0.0055 0.0268 0.0004 239 38 175 5 170 3 20140512L21 0.0495 0.0012 0.1872 0.0041 0.0274 0.0004 170 24 174 3 175 3 20140512L22 0.0499 0.0018 0.1885 0.0061 0.0274 0.0005 192 45 175 5 174 3 表 2 五凤矿区粗面安山岩主量元素含量
Table 2. Major element contents of the trachyandesite from Wufeng orefield
样品号 13WF13-1 13WF13-2 13WF13-3 13WF13-4 13WF13-5 13WF13-6 13WF13-7 SiO2 59.49 59.15 60.28 58.33 58.58 61.36 60.46 Al2O3 18.67 18.06 18.90 17.75 18.14 18.23 18.39 Fe2O3 3.57 3.14 2.93 3.77 3.69 2.20 2.64 FeO 2.41 2.83 2.21 3.11 3.03 2.05 1.96 CaO 3.46 4.74 4.19 5.05 4.76 2.69 2.82 MgO 1.29 2.15 1.38 2.24 2.08 1.18 1.22 K2O 1.94 1.84 1.64 1.71 1.61 3.23 3.28 Na2O 6.81 5.49 5.83 5.06 5.30 6.77 6.49 TiO2 0.76 1.06 0.74 1.10 1.05 0.91 0.95 P2O5 0.35 0.35 0.27 0.37 0.35 0.39 0.39 MnO 0.13 0.17 0.13 0.17 0.19 0.14 0.14 LOI 0.80 1.05 0.93 1.12 1.14 0.77 0.87 Total 99.68 100.03 99.42 99.78 99.91 99.92 99.62 σ 4.64 3.32 3.23 2.99 3.06 5.45 5.47 ALK 8.75 7.33 7.47 6.77 6.90 10.00 9.77 Mg# 29.07 40.35 33.70 38.12 36.83 34.35 33.40 A/CNK 0.95 0.92 0.99 0.92 0.95 0.93 0.95 含量单位:%. 表 3 五凤矿区粗面安山岩稀土元素含量
Table 3. Rare earth element contents of the trachyandesite from Wufeng orefield
样品号 13WF13-1 13WF13-2 13WF13-3 13WF13-4 13WF13-5 13WF13-6 13WF13-7 La 32.30 30.50 33.30 34.80 33.70 39.40 35.40 Ce 64.00 62.60 64.70 72.80 69.60 77.40 70.30 Pr 6.54 6.37 6.42 7.79 7.70 8.73 7.62 Nd 21.20 21.70 21.80 26.30 26.60 31.40 28.20 Sm 3.81 3.83 3.91 4.55 4.82 5.55 4.97 Eu 1.57 1.45 1.76 1.74 1.63 1.82 1.67 Gd 3.39 3.66 3.44 4.21 3.62 3.89 3.64 Tb 0.44 0.43 0.44 0.57 0.56 0.57 0.53 Dy 2.24 2.43 2.29 2.84 3.01 2.95 2.90 Ho 0.46 0.52 0.46 0.58 0.59 0.60 0.57 Er 1.16 1.22 1.19 1.48 1.46 1.55 1.34 Tm 0.15 0.17 0.15 0.20 0.22 0.19 0.21 Yb 0.85 1.11 0.80 1.21 1.24 1.12 1.14 Lu 0.13 0.16 0.13 0.21 0.21 0.17 0.18 ΣREE 138.25 136.15 140.79 159.28 154.95 175.35 158.67 δEu 1.31 1.17 1.42 1.12 1.15 1.14 1.15 (La/Yb)N 25.62 18.57 28.16 19.43 18.37 23.77 20.98 含量单位:10-6. 表 4 五凤矿区粗面安山岩微量元素含量
Table 4. Trace element contents of the trachyandesite from Wufeng orefield
样品号 13WF13-1 13WF13-2 13WF13-3 13WF13-4 13WF13-5 13WF13-6 13WF13-7 Li 6.96 9.71 10.80 13.60 12.30 6.45 5.73 Be 3.16 2.06 3.16 2.64 2.01 1.63 1.14 Sc 26.70 26.50 27.20 25.30 25.00 22.00 21.20 V 224.00 236.00 247.00 259.00 228.00 263.00 257.70 Cr 21.60 19.40 24.30 20.50 19.90 19.30 22.00 Co 29.67 27.08 33.98 31.00 33.20 26.01 29.88 Ni 27.80 29.50 28.20 36.00 29.40 25.33 34.98 Cu 20.14 13.29 10.35 21.57 22.29 16.56 16.72 Zn 95.53 117.85 95.53 141.06 115.17 78.48 72.23 Ga 20.40 20.00 23.80 22.30 22.00 19.80 19.00 Ge 0.93 0.90 1.07 1.18 1.10 0.78 0.72 As 5.54 4.75 3.89 5.66 5.05 4.03 3.62 Rb 53.30 60.10 51.60 57.80 51.80 61.70 59.70 Sr 774 786 974 861 808 737 709 Y 16.20 17.00 15.90 19.60 17.60 17.60 16.70 Zr 122.00 64.70 66.50 80.00 88.00 143.00 131.00 Nb 6.21 10.02 5.84 11.88 10.80 8.16 7.66 Mo / 0.69 0.06 0.53 0.81 0.10 0.15 Cd 0.15 0.27 0.24 0.30 0.26 0.13 0.15 In 0.06 0.08 0.05 0.08 0.06 0.07 0.04 Sn 0.79 1.83 1.08 1.42 2.05 1.35 3.38 Sb 0.69 0.76 0.59 1.07 0.96 0.85 0.78 Cs 1.57 2.07 1.80 2.03 2.33 1.25 1.11 Ba 875.00 748 898 933 748 2000 1920 Hf 2.07 1.12 1.20 1.42 1.89 3.10 2.66 Ta 0.61 0.95 0.63 1.17 1.22 1.21 1.12 W 5.26 5.90 3.64 5.90 6.74 7.62 6.98 Tl 0.20 0.22 0.18 0.23 0.25 0.31 0.29 Pb 18.24 15.34 16.71 20.16 21.21 20.97 18.72 Th 2.28 3.18 3.81 3.81 4.28 3.19 2.93 U 0.68 0.77 0.69 0.87 1.06 0.92 0.93 含量单位:10-6. -
[1] 邵济安, 牟保磊, 何国琦, 等. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学(D辑), 1997, 27(5): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199705001.htm
Shao J A, Mu B L, He G Q, et al. Geological effects in tectonic superposition of Paleo-Pacific domain and Paleo-Asian domain in northern part of North China[J]. Science in China Series D: Earth Sciences, 1997, 40(6): 634-640. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199705001.htm
[2] 李锦轶. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 1998, 44(4): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htm
Li J Y. Some new ideas on tectonics of NE China and its neighboring areas[J]. Geological Review, 1998, 44(4): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htm
[3] 唐克东, 鞠楠, 张大权, 等. 关于古亚洲洋构造演化研究的几点思考[J]. 地质与资源, 2022, 31(3): 246-258, 330. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10389.shtml
Tang K D, Ju N, Zhang D Q, et al. Implication of the tectonic evolution of Paleo-Asian Ocean[J]. Geology and Resources, 2022, 31 (3): 246-258, 330. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10389.shtml
[4] 冯亚洲, 杨进辉, 孙金凤, 等. 中生代古太平洋板块俯冲诱发华北克拉通破坏的物质记录[J]. 中国科学: 地球科学, 2020, 50(5): 651-662. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202005007.htm
Feng Y Z, Yang J H, Sun J F, et al. Material records for Mesozoic destruction of the North China Craton by subduction of the Paleo-Pacific slab[J]. Science China Earth Sciences, 2020, 63(5): 690-700. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202005007.htm
[5] 赵春荆. 吉黑东部构造格架及地壳演化[M]. 沈阳: 辽宁大学出版社, 1996: 136-138.
Zhao C J. Tectonic framework and crust evolution of eastern Jilin and Heilongjiang provinces[M]. Shenyang: Liaoning University Press, 1996: 136-138.
[6] 芮宗瑶, 张洪涛, 王龙生, 等. 吉林延边地区斑岩型-浅成热液型金铜矿床[J]. 矿床地质, 1995, 14(2): 99-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ502.000.htm
Rui Z Y, Zhang H T, Wang L S, et al. Porphyry-epithermal copper-gold deposits in Yanbian area, Jilin Province[J]. Mineral Deposits, 1995, 14(2): 99-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ502.000.htm
[7] Goldfarb R J, Mao J W, Qiu K F, et al. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics[J]. Gondwana Research, 2021, 100: 223-250. doi: 10.1016/j.gr.2021.02.020
[8] Goldfarb R, Qiu K F, Deng J, et al. Orogenic gold deposits of China[C]//Chang Z S, Goldfarb R J. Mineral Deposits of China. Society of Economic Geologists Special Publication, 2019: 263-324.
[9] 贾大成, 胡瑞忠, 冯本智, 等. 吉林延边地区中生代火山岩金铜成矿系列及区域成矿模式[J]. 长春科技大学学报, 2001, 31(3): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200103004.htm
Jia D C, Hu R Z, Feng B Z, et al. Gold-copper metallogenic series and metallogenic model of Mesozoic volcanic belt in Yanbian area, Jilin Province[J]. Journal of Changchun University of Science and Technology, 2001, 31(3): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200103004.htm
[10] Jia D C, Hu R Z, Lu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian region, Northeast China[J]. Journal of Asian Earth Sciences, 2004, 23(2): 211-219. doi: 10.1016/S1367-9120(03)00123-8
[11] 吉林省地质矿产局. 吉林省区域地质志[M]. 北京: 地质出版社, 1988: 202-205.
Bureau of Geology and Mineral Resources, Jilin Province. Regional geological records of Jilin Province[M]. Beijing: Geological Publishing House, 1988: 202-205. (in Chinese)
[12] 殷长建, 彭玉鲸, 靳克. 中国东北东部中生代火山活动与泛太平洋板块[J]. 中国区域地质, 2000, 19(3): 303-311. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200003014.htm
Yin C J, Peng Y J, Jin K. Mesozoic volcanism in the eastern part of Northeast China and Transpacific plate[J]. Regional Geology of China, 2000, 19(3): 303-311. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200003014.htm
[13] 李超文, 郭锋, 范蔚茗, 等. 延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义[J]. 中国科学D辑: 地球科学, 2007, 37(3): 319-330. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200703003.htm
Li C W, Guo F, Fan W M, et al. Ar-Ar geochronology of Late Mesozoic volcanic rocks from the Yanji area, NE China and tectonic implications[J]. Science in China Series D: Earth Sciences, 2007, 50(4): 505-518. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200703003.htm
[14] 纪伟强. 吉黑东部中生代晚期火山岩的年代学和地球化学[D]. 长春: 吉林大学, 2004.
Ji W Q. Chronology and geochemistry of late Mesozoic volcanic rocks in eastern Jilin and Heilongjiang Provinces[D]. Changchun: Jilin University, 2004.
[15] 陈聪. 延边东部晚古生代—中生代构造演化与区域成矿规律[D]. 长春: 吉林大学, 2017.
Chen C. Late Paleozoic-Mesozoic tectonic evolution and regional metallogenic regularity of the eastern Yanbian area, NE China[D]. Changchun: Jilin University, 2017.
[16] 门兰静, 孙景贵, 陈雷, 等. 延边地区五凤-五星山金矿床成矿流体与成矿作用研究[J]. 矿床地质, 2016, 35(2): 381-394. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201602011.htm
Men L J, Sun J G, Chen L, et al. Ore-forming fluid and mineralization of Wufeng-Wuxingshan gold deposit, Yanbian area[J]. Mineral Deposits, 2016, 35(2): 381-394. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201602011.htm
[17] 张艳斌. 延边地区花岗质岩浆活动的同位素地质年代学格架[D]. 长春: 吉林大学, 2002.
Zhang Y B. Isotopic geochronology framework of granitic magmatic activity in Yanbian area[D]. Changchun: Jilin University, 2002. (in Chinese)
[18] 张笑鸣. 华北克拉通东北缘中生代岩浆事件——对多构造体系演化的制约[D]. 长春: 吉林大学, 2021.
Zhang X M. Mesozoic magmatic events in the northeastern margin of the North China Craton: Constraints on the evolution of the multiple tectonic regimes[D]. Changchun: Jilin University, 2021.
[19] 赵羽军, 孙景贵, 王清海, 等. 吉林延边地区浅成热液金(铜)矿床的40Ar/39Ar激光探针测年与成矿时代讨论[J]. 地学前缘, 2010, 17 (2): 156-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002021.htm
Zhao Y J, Sun J G, Wang Q H, et al. 40Ar/39Ar laser probe dating and discussion on metallogenic epoch of epithermal Au-Cu deposit in Yanbian area of Jilin[J]. Earth Science Frontiers, 2010, 17(2): 156-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002021.htm
[20] 刘金龙, 孙丰月, 林博磊, 等. 吉林延边闹枝金矿区粗面安山岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1394-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505012.htm
Liu J L, Sun F Y, Lin B L, et al. Geochronology and geochemistry of trachyandesite of Naozhi gold deposit in Yanbian region, southern Jinlin Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(5): 1394-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505012.htm
[21] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.
[22] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[23] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[24] Wedepohl K H. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2
[25] 周向斌, 李剑锋, 王可勇, 等. 吉林延边五星山-五凤金矿床碱长花岗岩锆石U-Pb定年及其地质意义[J]. 大地构造与成矿学, 2016, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201606009.htm
Zhou X B, Li J F, Wang K Y, et al. LA-ICP-MS zircon U-Pb dating of alkali granite in Wuxingshan-wufeng gold deposit in Yanbian area, Jilin Province and its geological significance[J]. Geotectonica et Metallogenia, 2016, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201606009.htm
[26] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997: 71-73, 122.
Zhao Z H. Principle of trace element geochemistry[M]. Beijing: Science Press, 1997: 71-73, 122. (in Chinese)
[27] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165 (3/4): 197-213.
[28] Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975. doi: 10.1016/S0016-7037(98)00121-5
[29] Furukawa Y, Tatsumi Y. Melting of a subducting slab and production of high-Mg andesite magmas: Unusual magmatism in SW Japan at 13-15 Ma[J]. Geophysical Research Letters, 1999, 26(15): 2271-2274. doi: 10.1029/1999GL900512
[30] Kamei A, Owada M, Nagao T, et al. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 2004, 75(3/4): 359-371.
[31] Mazzeo F C, D'Antonio M, Arienzo I, et al. Subduction-related enrichment of the Neapolitan volcanoes (Southern Italy) mantle source: New constraints on the characteristics of the slab-derived components[J]. Chemical Geology, 2014, 386: 165-183. doi: 10.1016/j.chemgeo.2014.08.014
[32] Santosh M, Teng X M, He X F, et al. Discovery of Neoarchean suprasubduction zone ophiolite suite from Yishui complex in the North China Craton[J]. Gondwana Research, 2016, 38: 1-27. doi: 10.1016/j.gr.2015.10.017
[33] Deng J, Wang C M, Bagas L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. doi: 10.1016/j.earscirev.2018.05.001
[34] Yang F, Santosh M, Kim S W. Mesozoic magmatism in the eastern North China Craton: insights on tectonic cycles associated with progressive craton destruction[J]. Gondwana Research, 2018, 60: 153-178. doi: 10.1016/j.gr.2018.04.003
[35] Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 1999, 157(1/2): 119-146.
[36] La Flèche M R, Camiré G, Jenner G A. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada[J]. Chemical Geology, 1998, 148(3/4): 115-136.
[37] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0
[38] Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(1): 297-312.
[39] Turner S, Caulfield J, Turner M, et al. Recent contribution of sediments and fluids to the mantle's volatile budget[J]. Nature Geoscience, 2012, 5(1): 50-54. doi: 10.1038/ngeo1325
[40] 赵春荆, 彭玉鲸, 党增欣, 等. 吉黑东部构造格架及地壳演化[M]. 沈阳: 辽宁大学出版社, 1996: 1-186.
Zhao C J, Peng Y J, Dang Z X, et al. Tectonic framework and crust evolution of Eastern Jilin and Heilongjiang Provinces[M]. Shenyang: Liaoning University Press, 1996: 1-186.
[41] 彭玉鲸, 齐成栋, 周晓东, 等. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换[J]. 地质与资源, 2012, 21(3): 261-265. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9048.shtml
Peng Y J, Qi C D, Zhou X D, et al. Transition from Paleo-Asian Ocean domain to circum-Pacific Ocean domain for the Ji-Hei composite orogenic belt: Time mark and relationship to global tectonics[J]. Geology and Resources, 2012, 21(3): 261-265. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9048.shtml
[42] Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001
[43] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014
[44] Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1/2): 1-18.
[45] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. doi: 10.1007/BF00375192
[46] Zhang S H, Zhao Y, Davis G A, et al. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization[J]. Earth-science Reviews, 2014, 131: 49-87. doi: 10.1016/j.earscirev.2013.12.004
-