APPLICATION PROBLEMS AND COUNTERMEASURES OF ROCK-SOIL SOURCE HEAT PUMP IN KARST AREAS
-
摘要:
地源热泵目前的主要形式是岩土源热泵. 为厘清系统在喀斯特地区应用时影响运行效果的因素, 进行了换热试验和工程调研, 认为不利的地层岩性和水文地质条件会在一定程度上制约系统的可持续开发利用, 空气潜孔锤钻井技术与施工中存在的问题也会使系统不能正常运行. 提出了加强基础地质和水文地质调查、地球物理勘察、钻探技术提升及过程管理等建议和对策.
Abstract:The main form of ground source heat pump is rock-soil source heat pump system. To find out the causes for the poor operation effect of the system when applied in karst area, the heat transfer test and engineering research are conducted. It is considered that the unfavorable formation lithology and hydrogeological conditions may restrict the sustainable development and utilization of the system to some extent, and the problems existing in the air pressure down-the-hole(DTH) hammer technology and construction may also cause abnormal running of the system. Thus, the paper put forwards some suggestions and countermeasures on strengthening basic geological and hydrogeological survey, geophysical prospecting, drilling technology promotion and process management.
-
Key words:
- rock-soil source heat pump /
- karst area /
- geothermal energy /
- carbon neutrality /
- carbon peak /
- Guizhou Province
-
-
[1] 韩再生, 冉伟彦, 佟红兵, 等. 浅层地热能勘查评价[J]. 中国地质, 2007, 34(6): 1115-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200706017.htm
Han Z S, Ran W Y, Tong H B, et al. Exploration and evaluation of shallow geothermal energy[J]. Geology in China, 2007, 34(6): 1115- 1121. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200706017.htm
[2] 朱世保, 彭清元, 刘刚, 等. 重庆市浅层地温能开发利用及监测现状[J]. 重庆交通大学学报(自然科学版), 2018, 37(10): 67-72. doi: 10.3969/j.issn.1674-0696.2018.10.11
Zhu S B, Peng Q Y, Liu G, et al. Development, utilization and monitoring status of shallow geothermal energy in Chongqing[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(10): 67-72. doi: 10.3969/j.issn.1674-0696.2018.10.11
[3] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018) [M]. 北京: 中国石化出版社, 2018: 11.
China Geological Survey, New Energy and Renewable Energy Department of the National Energy Administration, Institutes of Science and Development of Chinese Academy of Sciences, et al. China geothermal energy development report (2018)[M]. Beijing: China Petrochemical Press, 2018: 11.
[4] 栾英波, 郑桂森, 卫万顺. 浅层地温能资源开发利用发展综述[J]. 地质与勘探, 2013, 49(2): 379-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302025.htm
Luan Y B, Zheng G S, Wei W S. Review of the shallow geothermal energy resources development and utilization[J]. Geology and Exploration, 2013, 49(2): 379-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302025.htm
[5] Walch A, Li X, Chambers J, et al. Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios[J]. Energy, 2022, 244: 123086. doi: 10.1016/j.energy.2021.123086
[6] 王林, 范军, 林贵生. 贵阳市浅层地热能开发利用成效与前景[J]. 中国国土资源经济, 2018, 31(8): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ201808006.htm
Wang L, Fan J, Lin G S. Guiyang shallow geothermal energy development and utilization effect and prospect[J]. Natural Resource Economics of China, 2018, 31(8): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ201808006.htm
[7] 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425, 341. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10403.shtml
Wang G L, Lu C. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 2022, 31(3): 412-425, 341. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10403.shtml
[8] 王贵玲, 陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源, 2023, 32(1): 85-95, 126. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10467.shtml
Wang G L, Lu C. Stimulation technology development of hot dry rock and enhanced geothermal system driven by carbon neutrality target[J]. Geology and Resources, 2023, 32(1): 85-95, 126. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10467.shtml
[9] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. GB50366-2005地源热泵系统工程技术规范[S]. 北京: 中国建筑工业出版社, 2006: 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDT201602001.htm
Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB50366-2005 Technical code for ground-source heat pump system[S]. Beijing: China Architecture & Building Press, 2006: 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDT201602001.htm
[10] Xu Y S, Wang X W, Shen S L, et al. Distribution characteristics and utilization of shallow geothermal energy in China[J]. Energy and Buildings, 2020, 229: 110479. doi: 10.1016/j.enbuild.2020.110479
[11] 徐伟. 中国地源热泵发展研究报告——2018[M]. 北京: 中国建筑工业出版社, 2019: 1-8.
Xu W. China ground source heat pump development research report: 2018[M]. Beijing: China Architecture & Building Press, 2019: 1-8.
[12] 尚少文, 刘金玉, 刘兵红, 等. 地埋管管群换热器温度场影响因素的模拟研究[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(3): 566-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201803023.htm
Shang S W, Liu J Y, Liu H B, et al. Ground-coupled group heat exchanger factors affecting temperature simulation[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(3): 566- 576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201803023.htm
[13] 王恩琦, 黄体士, 张方方, 等. 回填材料对地源热泵系统换热效率的影响分析[J]. 制冷与空调, 2019, 33(3): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLKT201903005.htm
Wang E Q, Huang T S, Zhang F F, et al. Analysis of the influence of backfilling material on the heat transfer efficiency of ground source heat pump system[J]. Refrigeration and Air Conditioning, 2019, 33(3): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLKT201903005.htm
[14] 曲伸, 齐子姝, 郭磊. 地源热泵地埋管换热量影响因素研究[J]. 吉林建筑大学学报, 2020, 37(5): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJZ202005009.htm
Qu S, Qi Z S, Guo L. Study on the influencing factors of heat exchange amount of buried pipe of ground source heat pump[J]. Journal of Jilin Jianzhu University, 2020, 37(5): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJZ202005009.htm
[15] Aditya G R, Mikhaylova O, Narsilio G A, et al. Comparative costs of ground source heat pump systems against other forms of heating and cooling for different climatic conditions[J]. Sustainable Energy Technologies and Assessments, 2022, 42: 100824.
[16] 李龙波, 张兴勇, 蔡大为. 贵州喀斯特地区典型土壤碳酸盐垂直分布特征及其同位素组成研究[J]. 地球与环境, 2021, 49(4): 409- 415. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202104008.htm
Li L B, Zhang X Y, Cai D W. Vertical distribution of soil carbonate concentration and the carbon isotopic composition in typical soil profiles from Guizhou karst areas, Southwest China[J]. Earth and Environment, 2021, 49(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202104008.htm
[17] 王瑜, 刘志成. 地下水渗流对地源热泵竖直双U地埋管群传热特性的影响[J]. 实验室研究与探索, 2019, 38(9): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201909015.htm
Wang Y, Liu Z C. Influence of groundwater seepage to the heat transfer characteristics of double U-type ground heat exchanger group in heat pump system[J]. Research and Exploration In Laboratory, 2019, 38(9): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201909015.htm
[18] 石岩, 许天福, 王福刚, 等. 导热与导热-渗流作用下浅层地能热量输运数值模拟[J]. 吉林大学学报(地球科学版), 2012, 42(S2): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2041.htm
Shi Y, Xu T F, Wang F G, et al. Contrast heat transport of superficial geothermal based on seepage heat transfer mechanism by numerical simulation[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S2): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2041.htm
[19] 孙婉. 地下水渗流与地源热泵热量运移耦合模拟[J]. 太阳能学报, 2021, 42(5): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202105003.htm
Sun W. Coupling simulation of groundwater seepage and heat transfer of ground source heat pump[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202105003.htm
[20] Luo J, Xue W, Hu T, et al. Thermo-economic analysis of borehole heat exchangers (BHE) grouted using drilling cuttings in a dolomite area[J]. Applied Thermal Engineering, 2019, 150: 305-315. doi: 10.1016/j.applthermaleng.2018.12.130
[21] 段新胜, 林清龙, 毛汉川, 等. 岩土层原位导热系数的多元线性回归分析方法[J]. 太阳能学报, 2018, 39(2): 385-389. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802014.htm
Duan X S, Lin Q L, Mao H C, et al. Multiple linear regression analysis method for in-situ thermal conductivities of rock and soil layer[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 385-389. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802014.htm
[22] 陈焰华, 於仲义, 雷建平, 等. 武汉地区地源热泵技术应用存在的主要问题及对策分析[C]//建筑电气设计与研究——湖北省/武汉市建筑电气专业委员会二○○九年年会论文集. 武汉: 湖北省土木建筑学会建筑电气专业委员会, 2009: 359-364.
Chen Y H, Yu Z Y, Lei J P, et al. The main problems in the application of ground-source heat pump technology in Wuhan area and the countermeasures[C]//Electrical Design and Research of Buildings. Wuhan: Building Electrical Professional Committee of Hubei Civil Engineering and Architecture Society, 2009: 359-364. (in Chinese)
[23] Zhou K, Mao J F, Li Y, et al. Parameters optimization of borehole and internal thermal resistance for single U-tube ground heat exchangers using Taguchi method[J]. Energy Conversion and Management, 2019, 201: 112177. doi: 10.1016/j.enconman.2019.112177
[24] 王永辉. 地埋管换热系统设计与施工要点[J]. 洁净与空调技术, 2019(1): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KTJS201901018.htm
Wang Y H. Design and construction points of ground heat exchanger system[J]. Contamination Control & Air-Conditioning Technology, 2019(1): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KTJS201901018.htm
[25] Kavanaugh S P. A design method for hybrid ground-source heat pumps[J]. ASHRAE Transactions, 1998, 104(2): 691-698.
-