DISASTER-PREGNANT GEOLOGICAL CONDITIONS OF COLLAPSE AND LANDSLIDE IN HUIDONG COUNTY, SICHUAN PROVINCE
-
摘要:
随着乌东德水电站、白鹤滩水电站等金沙江各梯级水电站的不断开发建设及运营, 加上极端降雨多发, 会东县地质灾害呈现出多发频发的趋势, 严重威胁当地人民生产生活和生命财产安全. 在收集地质灾害历史资料以及野外详细地质调查的基础上, 分析总结了会东县地质灾害发育分布特征, 进而结合GIS分析手段, 研究了崩滑灾害与地形地貌、地层岩性、地质构造、斜坡结构、人类工程活动等孕灾因子之间的关系. 结果表明: 区内滑坡分布首先受地质构造和工程地质岩组影响, 其次受地形地貌和斜坡结构影响, 高程、坡度、斜坡结构与滑坡发育相关性都较好; 崩塌则受控于工程地质岩组, 并与坡度、地势起伏度及斜坡结构相关性较高. 综合考虑会东县内主要孕灾条件, 全县可分为四大孕灾地质条件区. 通过详细阐述每个区内的孕灾特征及发育规律, 进一步认识了会东县崩滑灾害孕灾地质条件, 可更好地助力于地方防灾减灾体系, 也可为其他地质灾害风险调查评价项目提供参考.
Abstract:With the continuous construction and operation of cascade hydropower stations on Jinsha River, coupled with frequent extreme rainfalls, the geohazards in Huidong County show a frequent tendency, seriously threatening local people's production and living. Based on the collected data of historical geohazards and detailed field geological survey, the paper analyzes and summarizes the development and distribution characteristics of geohazards in Huidong County, and the relationship between collapse-landslide and disaster-inducing factors such as landform, stratigraphic lithology, geological structure, slope structure and human engineering activities combined with GIS analysis method. The results show that the distribution of landslide in the area is affected first by geological structure and engineering geological rock formation, and then by landform and slope structure. The elevation, gradient and slope structure have good correlation with landslide development, while the collapse is controlled by engineering geological rock formation and highly correlated to gradient, relief intensity and slope structure. Considering the main disaster-inducing conditions in Huidong County, the whole county can be divided into four major disaster-pregnant geological condition areas. By description of the disaster-inducing characteristics and development laws in each area, the geological conditions of landslide disaster pregnancy in Huidong County are further recognized, which will expectedly help the local disaster prevention and reduction system, and provide reference for other geological disaster risk investigation and evaluation.
-
Key words:
- geohazard /
- disaster-pregnant condition /
- collapse /
- landslide /
- hydropower station /
- Sichuan Province
-
-
表 1 孕灾地质条件数据来源
Table 1. Data sources of the disaster-pregnant geological condition
孕灾地质条件 数据来源 地形地貌 高程 1∶ 50000地形图制作的DEM 坡度 1∶ 50000地形图制作的DEM 坡向 1∶ 50000地形图制作的DEM 地形起伏度 1∶ 50000地形图制作的DEM 地层岩性 工程地质岩组 1∶ 200000地质图、遥感解译、野外现场调查 地质构造 断层 1∶ 200000地质图、遥感解译、野外现场调查 斜坡结构 GIS分析和野外现场调查 水文地质条件 距河流距离 GIS分析和遥感解译 人类工程活动 距道路距离 GIS分析和遥感解译 平均植被覆盖度 遥感影像提取 -
[1] 刘传正, 陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 2020, 28(2): 375-383.
Liu C Z, Chen C L. Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology, 2020, 28(2): 375-383.
[2] 许强, 陆会燕, 李为乐, 等. 滑坡隐患类型与对应识别方法[J]. 武汉大学学报(信息科学版), 2022, 47(3): 377-387.
Xu Q, Lu H Y, Li W L, et al. Types of potential landslide and corresponding identification technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387.
[3] 郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1538-1547.
Guo C, Xu Q, Dong X J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547.
[4] 滕明明. 乌东德水电站库区鲹鱼河右岸滑坡群形成机理及稳定性评价[D]. 宜昌: 三峡大学, 2022.
Teng M M. On the Formation mechanism and stability assessment of landslide group on the right bank of Trevally River in the reservoir area of Wudongde Hydropower Station[D]. Yichang: China Three Gorges University, 2022.
[5] 康亚, 赵超英, 张勤, 等. InSAR滑坡探测技术研究——以金沙江乌东德水电站段为例[J]. 大地测量与地球动力学, 2018, 38(10): 1053-1057.
Kang Y, Zhao C Y, Zhang Q, et al. Research on the InSAR technique of landslide detection: A case study of Wudongde Hydropower Station section, Jinshajiang[J]. Journal of Geodesy and Geodynamics, 2018, 38(10): 1053-1057.
[6] 胡启芳. 乌东德库岸滑坡灾害风险性研究[D]. 武汉: 长江科学院, 2014.
Hu Q F. Study on landslide hazards risk of Wudongde bank[D]. Wuhan: Changjiang River Scientific Research Institute, 2014.
[7] 赵昌坤. 四川省会东县毛椿树泥石流发育特征及治理工程措施研究[D]. 成都: 西南交通大学, 2016.
Zhao C K. Research on the development characteristics and treatment engineering of Maochunshu debris flow in Huidong County of Sichuan Province[D]. Chengdu: Southwest Jiaotong University, 2016.
[8] 聂成顺. 基于InSAR和光学遥感的会东县滑坡隐患识别研究[D]. 北京: 中国地质大学, 2021.
Nie C S. Recognition for potential landslides in Huidong County based on InSAR and optical remote sensing[D]. Beijing: China University of Geosciences, 2021.
[9] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374.
Xu Q. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374.
[10] 许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10): 2020-2033. doi: 10.11947/j.AGCS.2022.20220302
Xu Q, Guo C, Dong X J. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2020-2033. doi: 10.11947/j.AGCS.2022.20220302
[11] 丁俊, 魏伦武, 秦建华, 等. 西南地区地质灾害调查工作的思考[J]. 沉积与特提斯地质, 2006, 26(3): 77-80.
Ding J, Wei L W, Qin J H, et al. Some thoughts on the geological survey of the geological hazards in southwestern China[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(3): 77-80.
[12] 王全涛, 方敏. 广东省韶关市曲江区地质灾害分区及防治[J]. 地质与资源, 2017, 26(1): 73-76.
Wang Q T, Fang M. Zonation and control of geological disasters in Qujiang district of Shaoguan City, Guangdong Province[J]. Geology and Resources, 2017, 26(1): 73-76.
[13] 王涛, 段鹏. 山西省中阳县地质灾害特征及区划研究[J]. 地质与资源, 2016, 25(5): 487-493. doi: 10.3969/j.issn.1671-1947.2016.05.012
Wang T, Duan P. Research of the characteristics and zonation of geological hazards in Zhongyang County, Shanxi Province[J]. Geology and Resources, 2016, 25(5): 487-493. doi: 10.3969/j.issn.1671-1947.2016.05.012
[14] 刘腾, 任蕊, 匡野, 等. 四川省北川县崩滑灾害孕灾地质条件分析[J]. 中国地质调查, 2022, 9(6): 59-66.
Liu T, Ren R, Kuang Y, et al. Analysis on the disaster-pregnancy geological conditions of collapse and landslide in Beichuan County, Sichuan Province[J]. Geological Survey of China, 2022, 9(6): 59-66.
[15] 谭运钊, 王正祥. 乌东德水电站金坪子滑坡变形监测综合分析[J]. 人民长江, 2015, 46(14): 91-93.
Tan Y Z, Wang Z X. Comprehensive analysis of deformation monitoring of Jinpingzi landslide at Wudongde Hydropower Station[J]. Yangtze River, 2015, 46(14): 91-93.
[16] 戴可人, 沈月, 吴明堂, 等. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别[J]. 测绘学报, 2022, 51(10): 2069-2082.
Dai K R, Shen Y, Wu M T, et al. Identification of potential landslides in Baihetan Dam area before the impoundment by combining InSAR and UAV survey[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2069-2082.
[17] 王高峰, 王爱军, 田运涛, 等. 基于图幅调查的六盘山镇孕灾地质条件分析[J]. 水土保持研究, 2016, 23(5): 364-369.
Wang G F, Wang A J, Tian Y T, et al. Analysis on disaster-pregnant geological environment of Liupanshan Town based on map sheet survey[J]. Research of Soil and Water Conservation, 2016, 23(5): 364-369.
[18] 王东辉, 陈绪钰, 朱德明, 等. 成渝经济区南部城市群孕灾条件与地质灾害发育特征[J]. 地质力学学报, 2016, 22(3): 695-705.
Wang D H, Chen X Y, Zhu D M, et al. Formation conditions and spatial distribution of geo-hazards in southern urban agglomeration of Chengdu-Chongqing Economic Zone[J]. Journal of Geomechanics, 2016, 22(3): 695-705.
[19] 郭晨, 许强, 董秀军, 等. 无人机在重大地质灾害应急调查中的应用[J]. 测绘通报, 2020(10): 6-11, 73.
Guo C, Xu Q, Dong X J, et al. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards[J]. Bulletin of Surveying and Mapping, 2020(10): 6-11, 73.
[20] 王俊豪, 魏云杰, 梅傲霜, 等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质, 2021, 48(2): 388-401.
Wang J H, Wei Y J, Mei A S, et al. Multidimensional extraction of UAV tiltphotography-based information of loess landslide and its application[J]. Geology in China, 2021, 48(2): 388-401.
[21] 李媛. 中国地质调查局"山地丘陵区地质灾害调查工程"进展[J]. 中国地质, 2018, 45(6): 1082.
Li Y. Progress of "Geological Disaster Investigation Project in Mountainous and Hilly Areas" of China Geological Survey[J]. Geology in China, 2018, 45(6): 1082. (in Chinese)
-