Geological characteristics and metallogenic model of Hewa gold deposit in southeastern Liaoning Province
-
摘要:
河洼金矿位于华北克拉通东部的金成矿带中,地表有多条金矿化蚀变带,具有金矿床发育前提. 由于没有有效的深部勘查手段,虽然进行了大量的勘查研究工作,但对该地区地质认识有限. 本文在前人地质研究成果的基础上,结合广域电磁法及深部钻探成果,梳理永宁盆地地层地质特征,对不同深度成矿物质进行综合分析,对河洼地区金矿成矿特征及成矿模式形成新的认识,认为深度1 000 m左右的永宁组地层与下伏片麻岩接触界面及界面附近发育的张裂隙,甚至热液活动的所有部位均为有利成矿部位. 根据已有的金矿化蚀变规模推断,该地区具有很好的金成矿前景.
Abstract:Hewa gold deposit is located in the gold metallogenic belt in the eastern North China Craton. There are several gold mineralized belts on the surface, with the precondition for the development of gold deposit. Although a lot of exploration research work has been done, the geological understanding of this area is still limited due to lack of effective deep exploration means. Based on previous geological research, combined with wide field electromagnetic method and deep drilling results, this paper summarizes the stratigraphic geological characteristics of Yongning basin, comprehensively analyzes the metallogenic materials at different depths, and forms a new understanding of metallogenic characteristics and model of Hewa gold deposit. It is considered that the tensile fractures developed in and near the contact interface between Yongning Formation and underlying gneiss at a depth about 1 000 m, and even all the locations of hydrothermal activity are favorable for mineralization. According to the existing scale of gold mineralization, it is inferred that there is a good gold metallogenic prospect in the study area.
-
-
表 1 浅部含金矿化蚀变岩带特征一览表
Table 1. Characteristics of shallow gold-bearing altered zone
编号 长度/m 宽度/m 矿化及蚀变 Au品位/10-6 产状 控制工程 Au1 300 0.10~1.00 褐铁矿化、硅化 1.78 293~300°/66~86° 探槽 Au2 310 0.05~0.10 黄铁矿、磁黄铁矿、闪锌矿化,硅化 0.04~2.70 100°/73°,275°/88° 浅部钻孔 Au3 480 0.15~0.30 黄铁矿、毒砂、黄铜矿、黝铜矿、铜蓝矿化,硅化 0.14~38.03 76~125°/69~85° 探槽、浅部钻孔 Au4 1120 0.15~0.70 褐铁矿化、硅化、黄铁矿化 0.03~19.60 102~147°/71~86° 探槽、浅部钻孔 Au5 1510 0.10~3.90 褐铁矿化、硅化 0.02~16.87 106~135°/77~86° 探槽、浅部钻孔 Au6 470 0.10~0.20 褐铁矿化、弱硅化 0.06~0.19 120°/82° Au7 260 0.15~1.30 褐铁矿、磁铁矿、黄铁矿化,硅化 0.44~4.64 102~125°/83~87° 探槽 Au8 300 0.5~1.3 褐铁矿化、硅化 0.23~0.24 270°/85°,93°/78° 探槽 Au9 300 0.5~1.1 褐铁矿化、硅化 0.12~0.30 278°/80° 探槽 Au10 40 0.62 褐铁矿化 0.13~7.44 284°/85° 探槽 Au11 40 0.50 褐铁矿化 0.12~6.14 285°/76° 探槽 Au12 250 0.10~1.0 褐铁矿化 0.24~0.50 315°/68° 探槽 Au13 约200 黄铁矿化、硅化、钼矿化 0.11~0.27 浅部钻孔 Au14 150 3 硅化、绢云母化、褐铁矿化 0.25 30°/75° Au15 20 3~5 硅化、绢云母化、褐铁矿化 0.40 130°/85° Au16 230 1~2 硅化、绢云母化、褐铁矿化 0.48 145°/75° Au17 20 3~5 硅化、绢云母化、褐铁矿化 0.22 5°/75° Au18 30 8~15 硅化、绢云母化、褐铁矿化 0.18~0.29 300°/75° Au19 50 5~10 硅化、绢云母化、褐铁、磁铁矿化 1.01 120°/75° Au20 80 8~15 硅化、绢云母化、褐铁、磁铁矿化 1.42 310°/80° Au21 100 2~3 硅化、绢云母化、褐铁矿化 0.76 115°/80° Au22 150 3~5 硅化、云英岩化、褐铁矿化 0.18 Au23 130 1~2 硅化、绢云母化、褐铁矿化 0.16 10°/70° Au24 200 5~8 硅化、绢云母化、褐铁矿化 0.18 150°/80° Au25 130 3~5 硅化、绢云母化、褐铁矿化 0.26~0.99 305°/75° 表 2 ZK1-1钻孔含金矿化蚀变岩带特征一览表
Table 2. Characteristics of gold-bearing altered zone in ZK1-1borehole
编号 深度/m 垂厚/m 矿化及蚀变 Au品位/10-6 Au平均品位/10-6 Au1 124.45~140.57 16.12 黄铁矿化、方铅矿化 0.17~0.78 0.36 Au2 214.38~217.36 2.98 硅化、绢云母化、褐铁矿化 0.25~0.38 0.32 Au3 250.50~252.78 2.28 黄铁矿化、碳酸盐化 0.22~0.30 0.26 Au4 291.09~294.29 3.20 绢云母化、黄铁矿化、方铅矿化 0.19~0.45 0.29 Au5 365.81~369.81 4.00 绢云母化、绿泥石化、黄铁矿化、碳酸盐化 0.18~0.27 0.17 Au6 408.51~417.51 9.00 方铅矿化、黄铁矿化 0.05~0.31 0.21 Au7 483.75~487.75 4.00 黄铁矿化、绿泥石化 0.10~0.37 0.21 Au8 518.89~520.89 2.00 黄铁矿化、绿泥石化 0.30~0.57 0.44 Au9 554.51~556.81 2.30 黄铁矿化 0.19~0.35 0.27 Au10 567.61~573.49 5.88 黄铁矿化、绿泥石化 0.18~0.36 0.26 Au11 676.88~683.88 7.00 硅化、碳酸盐化、黄铁矿化 0.08~0.35 0.20 Au12 698.88~704.88 6.00 黄铁矿化、硅化 0.22~3.34 0.76 Au13 841.08~846.08 5.00 黄铁矿化、硅化、绿泥石化 0.10~0.44 0.25 Au14 938.76~953.10 14.34 黄铁矿、黄铜矿、方铅矿、闪锌矿化,碳酸盐化 0.24~1.00 0.45 Au15 1367.31~1371.65 4.34 黄铁矿化、硅化、钾化 0.09~0.32 0.19 Au16 1396.40~1405.78 9.38 黄铁矿化、磁黄铁矿化、硅化、钾化、方铅矿化 0.04~1.71 0.31 Au17 1465.24~1468.24 3.00 黄铁矿化、黄铜矿化 0.97~1.31 1.17 Au18 1475.55~1480.75 5.20 黄铁矿化、硅化 0.09~0.89 0.33 Au19 1500.94~1503.44 2.50 硅化、钾化、黄铁矿化 0.09~0.23 0.14 Au20 1826.33~1833.16 6.83 黄铁矿化、磁铁矿化 0.10~0.27 0.20 Au21 1888.01~1889.01 1.00 黄铁矿化 1.06 1.06 -
[1] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153-1168.
Zhu R X, Fan H R, Li J W, et al. Decratonic gold deposits[J]. Science China Earth Sciences, 2015, 58(9): 1523-1537.
[2] 陈荣度, 李显东, 杨雅君, 等. 辽东半岛南部印支造山旋回早期的顺层滑脱构造[J]. 辽宁地质, 1999, 16(3): 161-169.
Chen R D, Li X D, Yang Y J, et al. Bedding decollement structure of the early Indosinian orogenic cycle in the south of Liaodong Peninsula [J]. Liaoning Geology, 1999, 16(3): 161-169.
[3] 陈荣度, 李显东, 张福生. 对辽东古元古代地质若干问题的讨论[J]. 中国地质, 2003, 30(2): 207-213.
Chen R D, Li X D, Zhang F S. Several problems about the Paleoproterozoic geology of eastern Liaodong[J]. Geology in China, 2003, 30(2): 207-213.
[4] 张秋生. 辽东半岛早期地壳与矿床[M]. 北京: 地质出版社, 1988: 1-570.
Zhang Q S. Early crust and mineral deposits of Liaodong Peninsula, China[M]. Beijing: Geological Publishing House, 1988: 1-570.
[5] 杨中柱, 孟庆成, 冮江, 等. 辽南变质核杂岩构造[J]. 辽宁地质, 1996(4): 241-250.
Yang Z S, Meng Q C, Gang J, et al. The metamorphic core-complex structure in south Liaoning[J]. Liaoning Geology, 1996(4): 241-250.
[6] 王文清, 曲亚军. 辽东古元古宙金矿地质特征及成矿模式[J]. 辽宁地质, 2000, 17(3): 161-172.
Wang W Q, Qu Y J. Geological characteristics and metallogenic models of gold deposits of Paleoproterozoic in east Liaoning Province [J]. Liaoning Geology, 2000, 17(3): 161-172.
[7] 陈慧, 刘建辉, 丁正江, 等. 辽南晚中生代以来的剥露冷却历史[J]. 地质学报, 2022, 96(4): 1163-1181.
Chen H, Liu J H, Ding Z J, et al. The exhumation and cooling history in the southern Liaodong Peninsula since Late Mesozoic[J]. Acta Geologica Sinica, 2022, 96(4): 1163-1181.
[8] Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. doi: 10.1016/j.oregeorev.2015.08.021
[9] 朱志澄. 变质核杂岩和伸展构造研究述评[J]. 地质科技情报, 1994, 13(3): 1-9.
Zhu Z C. Review on metamorphic core complex and extensional tectonics[J]. Geological Science and Technology Information, 1994, 13(3): 1-9.
[10] 纪沫, 胡玲, 刘俊来, 等. 辽南变质核杂岩主拆离断层的波瓦状构造(corrugation)及其成因[J]. 地质科学, 2008, 43(1): 12-22, 49.
Ji M, Hu L, Liu J L, et al. Features and mechanism of corrugation structure in the Liaonan (southern Liaoning) metamorphic core complex[J]. Chinese Journal of Geology, 2008, 43(1): 12-22, 49.
[11] 文飞, 田忠华. 辽东半岛辽河群变泥质岩变质变形研究: 对古元古代造山作用及折返过程的启示[J]. 岩石学报, 2021, 37(2): 619- 635.
Wen F, Tian Z H. A metamorphic and deformational study of meta- pelites in the Liaohe Group located at Liaodong Peninsula: Significance to process of Paleoproterozoic orogenesis and exhumation [J]. Acta Petrologica Sinica, 2021, 37(2): 619-635.
[12] 姚晓峰, 颜廷杰, 林成贵, 等. 辽东半岛五龙金矿成矿系统新认识: 来自外围热液角砾岩型铅锌矿化的指示[J]. 岩石学报, 2021, 37(6): 1883-1900.
Yao X F, Yan T J, Lin C G, et al. New sight for gold forming system in Wulong deposit: Indicated by the distal Pb-Zn mineralization in hydrothermal breccia[J]. Acta Petrologica Sinica, 2021, 37(6): 1883-1900.
[13] 张拴宏, 张琪琪, 胡国辉, 等. 辽东五龙与青城子矿集区成矿和保存条件对比及其深部找矿意义[J]. 地质学报, 2022, 96(1): 232- 248.
Zhang S H, Zhang Q Q, Hu G H, et al. Comparison of mineralization and preservation conditions in the Wulong and Qingchengzi ore concentration areas, eastern Liaoning Province: Implications for deep metallogenic prediction[J]. Acta Geologica Sinica, 2022, 96(1): 232-248.
[14] 李强, 张捷, 廖勇, 等. 辽东裂谷的基本特征及含矿建造划分[J]. 有色矿冶, 2007, 23(4): 9-11.
Li Q, Zhang J, Liao Y, et al. Basical features of Liaodong rift and categorization of its ore-bearing formation[J]. Non-Ferrous Mining and Metallurgy, 2007, 23(4): 9-11.
[15] 刘俊来, 纪沫, 申亮, 等. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学: 地球科学, 2011, 41(5): 618-637.
Liu J L, Ji M, Shen L, et al. Early Cretaceous extensional structures in the Liaodong Peninsula: Structural associations, geochronological constraints and regional tectonic implications[J]. Science China Earth Sciences, 2011, 54(6): 823-842.
[16] 仲米山, 王海鹏, 鲁红峰, 等. 辽河(岩)群变形期次再讨论[J]. 地质与资源, 2018, 27(3): 218-223. http://www.dzyzy.cn/article/id/8458
Zhong M S, Wang H P, Lu H F, et al. Rediscussion on the deformation phases of Liaohe (rock) Group[J]. Geology and Resources, 2018, 27(3): 218-223. http://www.dzyzy.cn/article/id/8458
[17] 刘俊来, 崔迎春, 关会梅. 辽吉朝褶皱带古元古宙岩浆核杂岩及其大地构造意义[J]. 地质通报, 2002, 21(4/5): 202-206.
Liu J L, Cui Y C, Guan H M. Magmatic core complex in the Liaoning-Jilin-Korea Paleoproterozoic fold belt and its tectonic significance[J]. Geological Bulletin of China, 2002, 21(4/5): 202-206.
[18] 骆念岗, 王彬娜, 尹志刚, 等. 辽东岫岩地区古元古代盘道岭岩体地球化学特征及构造背景探讨[J]. 中国地质, 2023, 50(4): 1217- 1232.
Luo N G, Wang B N, Yin Z G, et al. Geochemistry of the Paleoproterozoic Pandaoling pluton in Xiuyan area of eastern part of Liaoning Province and its implications for tectonic setting[J]. Geology in China, 2023, 50(4): 1217-1232.
[19] 林伟, 王清晨, 王军, 等. 辽东半岛晚中生代伸展构造——华北克拉通破坏的地壳响应[J]. 中国科学: 地球科学, 2011, 41(5): 638-653.
Lin W, Wang C C, Wang J, et al. Late Mesozoic extensional tectonics of the Liaodong Peninsula massif: Response of crust to continental lithosphere destruction of the North China Craton[J]. Science China Earth Sciences, 2011, 54(6): 843-857.
[20] 陈衍景, 翟明国, 蒋少涌. 华北大陆边缘造山过程与成矿研究的重要进展和问题[J]. 岩石学报, 2009, 25(11): 2695-2726.
Chen Y J, Zhai M G, Jiang S Y. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent[J]. Acta Petrologica Sinica, 2009, 25(11): 2695- 2726.
[21] 林伟, 王军, 刘飞, 等. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报, 2013, 29(5): 1791-1810.
Lin W, Wang J, Liu F, et al. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics[J]. Acta Petrologica Sinica, 2013, 29(5): 1791-1810.
[22] 何继善. 广域电磁测深法研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1065-1072.
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1065-1072.
[23] 何继善. 深部矿产资源探测中电磁方法的若干进展[J]. 贵州地质, 2013, 30(1): 1-8.
He J S. Some advances of electromagnetic method in the deeper prospecting of mineral resources[J]. Guizhou Geology, 2013, 30(1): 1-8.
[24] 梁维天, 李勇, 王东波, 等. 辽东南金属矿勘查中广域电磁法应用效果[J]. 物探与化探, 2020, 44(5): 1078-1084.
Liang W T, Li Y, Wang D B, et al. The application effect of WFEM in the exploration of metal deposits in the southeast of Liaoning Province[J]. Geophysical and Geochemical Exploration, 2020, 44 (5): 1078-1084.
[25] 刘洋, 王健, 尹志超. 广域电磁法在新疆哈密卡拉塔格矿集区勘查中的应用[J]. 矿产勘查, 2022, 13(7): 999-1006.
Liu Y, Wang J, Yin Z C. Application of wide-field electromagnetic method in the exploration of Kalatge ore concentration area in Hami, Xinjiang[J]. Mineral Exploration, 2022, 13(7): 999-1006.
[26] Li D Q, Zhang Q X. Application of the wide field electromagnetic method for oil and gas exploration in a red-bed basin of South China [J]. Journal of Environmental and Engineering Geophysics, 2021, 26 (1): 25-34.
[27] Yu Z H, Yan L Q, Cai Z J, et al. Application of wide-field electromagnetic method in shale gas survey in Eastern Kunlun, Qinghai Province, China[J]. Journal of Central South University, 2020, 27(11): 3388-3397.
[28] 田茂军, 李帝铨, 李斌, 等. 辽宁南芬变质核杂岩核部花岗岩地球化学特征及构造意义[J]. 地球科学, 2019, 44(10): 3551-3564.
Tian M J, Li D Q, Li B, et al. Geochemical characteristics and tectonic significance of granite from Nanfen metamorphic core complexes in Liaoning[J]. Earth Science, 2019, 44(10): 3551- 3564.
[29] 单学东, 李显东, 战丽华, 等. 辽东永宁组(群)沉积特征[J]. 辽宁地质, 1999, 16(1): 29-34.
Shan X D, Li X D, Zhan L H, et al. Sedimentary characteristics of Yongning Formation (Group)[J]. Liaoning Geology, 1999, 16(1): 29-34.
[30] 杨玉伟, 余超, 苏特, 等. 辽东黑沟地区辽河群成因及其对辽吉造山带构造演化的制约[J]. 地质学报, 2020, 94(5): 1397-1412.
Yang Y W, Yu C, Su T, et al. Petrogenesis of the Liaohe Group from the Heigou area in the eastern Liaoning Province: Constraints on tectonic evolution of the Liao Ji orogenic belt[J]. Acta Geologica Sinica, 2020, 94(5): 1397-1412.
[31] 陈衍景, 郭光军, 李欣. 华北克拉通花岗绿岩地体中中生代金矿床的成矿地球动力学背景[J]. 中国科学(D辑), 1998, 28(1): 35-40.
Chen Y J, Guo G J, Li X. Metallogenic geodynamic background of Mesozoic gold deposits in granite-greenstone terrains of North China Craton[J]. Science in China Series D: Earth Sciences, 1998, 41 (2): 113-120.
-