Evaluation of original oil in-place of fracture pore type of carbonate rock oil-gas reservoir in the Middle East
-
摘要:
中东近扎格罗斯褶皱带地区构造和储层复杂,对碳酸盐岩储层储集类型、规模和含油性的准确判断难度大,从而影响该区油气藏地质储量的准确评估,制约了资源评价的可靠性. 本文以S油田为例展示一套适合该地区的多信息相融合的裂缝孔隙型碳酸盐岩储层评价技术及地质储量评估方法:基于岩心分析、测井解释、地球物理分析等,定量评价双介质储层储集空间. 在此基础上结合动态的试井数据,优选出适合本地区碳酸盐储层综合评价的关键指标,主要为裂缝孔隙度和储层厚度. 再结合地震属性,预测平面上裂缝发育和裂缝欠发育储层的分布,根据其分布范围统计不同区带储层物性参数. 利用容积法分别估算裂缝储层和基质储层地质储量,最终整合为全油田原始地质储量.
Abstract:The complex geological structures and reservoirs near the Zagros fold belt in the Middle East present significant challenges for accurately determining the reservoir types, sizes and hydrocarbon potential in carbonate rock reservoirs, thereby affecting the precise estimation of oil-gas reserves and compromising the reliability of resource evaluation in the area. Taking S Oilfield for example, this paper demonstrates an integrated multi-information evaluation technique and geological reserve estimation method for fracture pore type of carbonate rock reservoirs in the area, namely the quantitative evaluation of dual-media reservoir space through core analysis, well logging interpretation, and geophysical analysis. Combined with dynamic logging data, the key evaluation indexes suitable for the carbonate rock reservoirs are optimized, mainly fracture porosity and reservoir thickness. Then the seismic attributes are employed to predict the planar distribution of fracture-developed and fracture-underdeveloped reservoirs. According to the distribution range, the physical parameters of reservoirs in different zones are statistically analyzed. Finally, the volumetric method is applied to separately estimate geological reserves in fracture reservoir and matrix reservoir, which are integrated into the original oil in place (OOIP) of the whole oilfield.
-
Key words:
- fracture pore type /
- carbonate rock /
- oil-gas reservoir /
- dual medium reservoir /
- reserve estimation /
- Middle East
-
-
表 1 各口井成像测井裂缝孔隙度计算结果
Table 1. Calculation results of fracture porosity by imaging logging of each well
地层组 井1 井2 井3 井4 井5 井6 井7 井8 井9 厚度加权/m 1 0.12 0.49 0.46 2 0.06 0 0.08 0.19 0 0.37 0.26 0.79 0.37 3 0.01 0.05 0.06 0.24 0.01 0.31 0.66 0.36 4 0.24 0.28 0.01 0.04 0.2 0.05 0.2 0.89 0.44 5 0.06 0.4 0.11 0.15 0.04 0.09 0.99 0.24 6 0.05 0.33 0.11 0.15 0.17 0.07 0.15 7 0.04 0.28 0.08 0.11 0.05 0.15 0.1 8 0.05 0.18 0.2 0.15 0.2 0.51 0.21 9 0.05 0.14 0.01 0.09 0.02 0.11 0.07 10 0.04 0.19 0.05 0.17 0.11 0.11 11 0.01 0.18 0.02 0.15 0.04 0.1 12 0.01 0.05 0.06 0.12 0.05 0.06 13 0.06 0.14 0.18 0.08 0.11 14 0 0.06 0.02 0.03 0 0.02 15 0.07 0.32 0.15 0.06 0.17 0.16 16 0.02 0.13 0.06 0.1 0.11 0.09 17 0 0.01 0.05 0.02 平均 0.19 孔隙度单位:%. 表 2 某层储量计算参数和结果表
Table 2. Calculation parameters and results of reserves in a certain reservoir
裂缝储集空间 储层 裂缝发育区 裂缝欠发育区 P10 P50 P90 P10 P50 P90 含油面积/km2 61 63 65 64.7 66 69 裂缝孔隙度/% 0.11 0.15 0.2 0.01 0.02 0.03 裂缝净毛比 0.5 0.64 0.75 0.4 0.59 0.69 原始地质储量/百万桶 263.6 269.3 280.5 38 48.6 60 基质储集空间 储层 P10 P50 P90 含油面积/km2 127.7 129 134 净毛比 0.033 0.071 0.11 含油饱和度 0.639 0.671 0.706 原始地质储量/百万桶 2837 3444 4146 裂缝-孔隙双介质合计 储层 P10 P50 P90 原始地质储量合计/百万桶 3373 3761 4478 -
[1] Beydoun Z R, Hughes Clarke M W, Stoneley R. Petroleum in the Zagros Basin: A Late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Paleozoic-Mesozoic passive-margin shelf[M]//Macqueen R W, Leckie D A. Foreland basins and fold belts. Tulsa: AAPG, 1992: 309-339.
[2] 贾小乐, 何登发, 童晓光. 扎格罗斯前陆盆地大油气田的形成条件与分布规律[J]. 中国石油勘探, 2013, 18(5): 54-67.
Jia X L, He D F, Tong X G. Formation and distribution of giant oil and gas fields in Zagros foreland basin[J]. China Petroleum Exploration, 2013, 18(5): 54-67.
[3] 蔡正旗, 郑永坚, 刘云鹤, 等. 确定碳酸盐岩油气层有效孔隙度下限值的新方法[J]. 西南石油学院学报, 1993, 15(1): 10-15.
Cai Z Q, Zheng Y J, Liu Y H, et al. A new method of determining lower limit of effective porosity in carbonate oil or gas reservoir[J]. Journal of Southwestern Petroleum Institute, 1993, 15(1): 10-15.
[4] 罗蛰潭, 王允诚. 油气储集层的孔隙结构[M]. 北京: 科学出版社, 1986: 40-82.
Luo Z T, Wang Y C. Pore structure of petroleum reservoirs[M]. Beijing: Science Press, 1986: 40-82. (in Chinese)
[5] 范嘉松. 世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J]. 地学前缘, 2005, 12(3): 23-30.
Fan J S. Characteristics of carbonate reservoirs for oil and gas fields in the world and essential controlling factors for their formation[J]. Earth Science Frontiers, 2005, 12(3): 23-30.
[6] 陈明春, 徐晟, 魏春光. 裂缝型碳酸盐岩储层预测技术及海外气田勘探实践[J]. 地球物理学进展, 2015, 30(4): 1660-1665.
Chen M C, Xu S, Wei C G. Technique of fractured carbonate reservoir prediction and its application in oversea gas field exploration [J]. Progress in Geophysics, 2015, 30(4): 1660-1665.
[7] 曾伟, 强平, 黄继祥. 川东嘉二段孔隙层下限及分类与评价[J]. 矿物岩石, 1997, 17(2): 42-48.
Zeng W, Qiang P, Huang J X. Reservoir's low limit, classification and evaluation of Member Ⅱ of Jialingjiang Formation (Lower Triassic) in Eastern Sichuan[J]. Journal of Mineralogy and Petrology, 1997, 17 (2): 42-48.
[8] 周文, 庄阿龙, 费怀义. 四川盆地川东地区石炭系储产层下限标准的确定方法[J]. 矿物岩石, 1999, 19(2): 31-36.
Zhou W, Zhuang A L, Fei H Y. The determination method of lower limitation of net pay thickness of carboniferous in Eastern Sichuan Basin[J]. Journal of mineralogy and Petrology, 1999, 19(2): 31-36.
[9] 万玲, 孙岩, 魏国齐. 确定储集层物性参数下限的一种新方法及其应用——以鄂尔多斯盆地中部气田为例[J]. 沉积学报, 1999, 17 (3): 454-457.
Wan L, Sun Y, Wei G Q. A new method used to determine the lower limit of the petrophysical parameters for reservoir and its application: A case study on Zhongbu Gas Field in Ordos Basin[J]. Acta Sedimentologica Sinica, 1999, 17(3): 454-457.
[10] 段新国, 王洪辉, 胡永章, 等. 储层参数下限的确定方法——以河南安棚油田为例[J]. 成都理工大学学报(自然科学版), 2003, 30 (2): 169-173.
Duan X G, Wang H H, Hu Y Z, et al. Methods of determining the lower limits of different parameters of reservoir in Anpeng Oilfield, Henan[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2003, 30(2): 169-173.
[11] 肖思和, 周文, 王允诚, 等. 天然气有效储层下限确定方法[J]. 成都理工大学学报(自然科学版), 2004, 31(6): 672-674.
Xiao S H, Zhou W, Wang Y C, et al. Method for determining the lower limits of effective reservoirs[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(6): 672-674.
[12] 李伟, 刘延莉, 刘志远. 伊拉克S油田碳酸盐岩储层特征及裂缝孔隙度计算方法[J]. 中外能源, 2019, 24(11): 29-35.
Li W, Liu Y L, Liu Z Y. Characteristics of carbonate reservoir and calculating method of fracture porosity in S Oilfield of Iraq[J]. Sino-Global Energy, 2019, 24(11): 29-35.
[13] 魏小薇, 谢继容, 唐大海, 等. 低孔渗砂岩储层基质物性下限确定方法研究——以川中LA构造沙一段油藏为例[J]. 天然气工业, 2005(S1): 28-31, 11.
Wei X W, Xie J R, Tang D H, et al. Methods of determining the matrix petrophysical cutoffs of low porosity and low permeability sandstone reservoir: Taking the J2s1 oil reservoir in LA field in Central Sichuan as an example[J]. Natural Gas Industry, 2005(S1): 28-31, 11.
[14] Francesconi A, Bigoni F, Balossino P, et al. Reservoir rock types application-Kashagan[M]//SPE/EAGE Reservoir Characterization and Simulation Conference. Abu Dhabi, UAE: SPE, 2009: SPE-125342-MS.
[15] Tariq M, Bizarro P, de Sousa A, et al. Reservoir characterization and modeling of a carbonate reservoir: Case study[M]//Abu Dhabi International Petroleum Conference and Exhibition. Abu Dhabi, UAE: SPE, 2012: SPE-161039-MS.
[16] Yu H, Ba J, Carcione J, et al. Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection[J]. Applied Geophysics, 2014, 11(1): 9-22.
[17] Wang Y J, Sun Y H, Yang S Y, et al. Saturation evaluation of microporous low resistivity carbonate oil pays in Rub Al Khali Basin in the Middle East[J]. Petroleum Exploration and Development, 2022, 49(1): 94-106.
[18] Bordenave M L. Zagros domain of Iran holds exploration, EOR opportunities[J]. Oil and Gas Journal: International Petroleum News and Technology, 2000, 98(19): 36-39.
[19] 蒲静, 秦启荣. 油气储层裂缝预测方法综述[J]. 特种油气藏, 2008, 15(3): 9-13.
Pu J, Qin Q R. An overview of fracture prediction methods for oil and gas reservoirs[J]. Special Oil and Gas Reservoirs, 2008, 15(3): 9-13.
[20] 唐颖, 樊太亮, 张涛, 等. 构造运动对扎格罗斯前陆盆地白垩系碳酸盐岩储层的影响——以Y油田为例[J]. 石油与天然气地质, 2016, 37(6): 944-951.
Tang Y, Fan T L, Zhang T, et al. Influence of tectonic movement on Cretaceous carbonate reservoirs in the Zagros foreland basin: A case study of Y Oilfield[J]. Oil & Gas Geology, 2016, 37(6): 944-951.
[21] 颜冠山, 刘宗宾, 宋洪亮, 等. 多层构造油藏纵向细分计算单元对储量参数及结果的影响[J]. 地质与资源, 2020, 29(4): 342-350. doi: 10.13686/j.cnki.dzyzy.2020.04.006
Yan G S, Liu Z B, Song H L, et al. Effect of vertical subdivision of computing units on reserve parameters and results of multilayer structural reservoir[J]. Geology and Resources, 2020, 29(4): 342-350. doi: 10.13686/j.cnki.dzyzy.2020.04.006
[22] 孔永吉, 吴孔友, 刘寅. 塔里木盆地顺南地区走滑断裂发育特征及演化[J]. 地质与资源, 2020, 29(5): 446-453. doi: 10.13686/j.cnki.dzyzy.2020.05.006
Kong Y J, Wu K Y, Liu Y. Development characteristics and evolution of the strike-slip faults in Shunnan area, Tarim Basin[J]. Geology and Resources, 2020, 29(5): 446-453. doi: 10.13686/j.cnki.dzyzy.2020.05.006
-