Spatiotemporal distribution characteristics of surface soil carbon pool in Sanjiang Plain
-
摘要:
三江平原作为东北黑土区最重要的粮食生产区和土壤碳库之一,其耕层土壤碳含量、分布特征及变化趋势一直是土壤学及生态学领域的研究热点. 基于1∶ 25万土地质量调查数据及全国第二次土壤普查数据,利用土地质量地球化学评价方法、土壤碳密度计算公式等,借助ArcGIS、SPSS等软件处理数据并绘制相关图表,研究三江平原土壤有机碳分布特征及其时空变化规律. 结果显示:研究区表层(0~0.2 m)土壤有机质整体丰富,全区表层土壤有机碳、全碳含量平均值分别为2.49%、2.67%,空间分布总体呈现“中东高-西低”的分布态势,表土有机碳密度均值为6.06 kg/m2,表层土壤全碳储量为581.3 Tg. 与第二次全国土壤普查成果相比,研究区65.7%的表层土壤有机质呈现下降趋势,表层土壤有机碳储量减少523.1 Tg,碳密度减少5.84 kg/m2. 近40年来三江平原研究区土壤有机质平均含量降低,但仍高于东北平原平均水平,是东北黑土区土壤碳储最为丰富的地区之一.
Abstract:Sanjiang Plain, as one of the most important grain production areas and soil carbon pools in the black soil region of Northeast China, has consistently been a research focus in soil science and ecology regarding the content, distribution characteristics, and variation trends of soil carbon in cultivated layer. Based on the data of 1 ∶ 250 000 land quality survey and the Second National Soil Survey, this paper studies the distribution characteristics and spatiotemporal variation patterns of soil organic carbon(SOC) in Sanjiang Plain through geochemical assessment methods for land quality, soil carbon density calculation, and data processing and mapping with ArcGIS and SPSS. The results indicate that the organic matter in the surface soil(0-0.2 m) of the study area is generally abundant, with the average SOC content of 2.49% and total carbon content of 2.67%, displaying a pattern of high in central-eastern areas and low in west spatially, with the average organic carbon density of 6.06 kg/m2 and the total carbon storage of 581.3 Tg in surface soil. The comparative analysis with the Second National Soil Survey reveals that 65.7% of surface soil organic matter shows decreasing trends, with the SOC storage decreasing by 523.1 Tg, accompanied by carbon density reduction of 5.84 kg/m2. Despite the decline in average content of soil organic matter over the past 40 years, Sanjiang Plain maintains higher SOC levels than the average of Northeast China Plain, remaining one of the areas with the richest soil carbon storage in the black soil region of Northeast China.
-
Key words:
- soil /
- organic carbon /
- carbon pool /
- carbon density /
- Sanjiang Plain
-
-
表 1 研究区土壤表层(0~0.2 m)碳含量统计
Table 1. Statistics of carbon content in the surface soil (0-0.2 m) of the study area
分类 样品数/件 平均值/% 最小值/% 最大值/% 标准差 全碳 20 397 2.67 0.3 39.11 1.36 有机碳 20 397 2.49 0.11 35.27 1.24 无机碳 20 397 0.18 0 11.09 0.3 表 2 三江平原土壤有机质评价等级分布面积及比例
Table 2. Distribution area and proportion of soil organic matter evaluation grades in Sanjiang Plain
等级 一等
(丰富)二等
(较丰富)三等
(中等)四等
(较缺乏)五等
(缺乏)面积/km2 44 402.67 24 416.98 16 008.52 4 457.43 285.79 占比/% 49.57 27.26 17.87 4.98 0.32 表 3 研究区表层(0~0.2 m)土壤有机碳储量和密度变化特征表
Table 3. Variation of organic carbon storage and density in surface soil (0-0.2 m) of the study area
有机碳储量/Tg 有机碳密度/(kg/m2) 2010年代 1980年代 变化 2010年代 1980年代 变化 542.8 1065.9 -523.1 6.06 11.9 -5.84 -
[1] 戴慧敏, 刘凯, 宋运红, 等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源, 2020, 29(6): 510-517. doi: 10.13686/j.cnki.dzyzy.2020.06.002
Dai H M, Liu K, Song Y H, et al. Black soil degradation and intensity in northeast China: Geochemical indication[J]. Geology and Resources, 2020, 29(6): 510-517. doi: 10.13686/j.cnki.dzyzy.2020.06.002
[2] 韩晓增, 邹文秀. 我国东北黑土地保护与肥力提升的成效与建议[J]. 中国科学院院刊, 2018, 33(2): 206-212.
Han X Z, Zou W X. Effects and suggestions of black soil protection and soil fertility increase in Northeast China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 206-212.
[3] 全国农业技术推广服务中心, 农业部耕地质量监测保护中心, 沈阳农业大学. 东北黑土区耕地质量评价[M]. 北京: 中国农业出版社, 2017: 1-2.
National Agricultural Technology Extension Service Center, Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, PRC, Shenyang Agricultural University. Evaluation of cultivated land quality in the black soil region of Northeast China [M]. Beijing: China Agriculture Press, 2017: 1-2. (in Chinese)
[4] 阎百兴, 杨育红, 刘兴土, 等. 东北黑土区土壤侵蚀现状与演变趋势[J]. 中国水土保持, 2008(12): 26-30.
Yan B X, Yang Y H, Liu X T, et al. Present status of soil erosion and evolution tendency of black soil region of Northeast[J]. Soil and Water Conservation in China, 2008(12): 26-30.
[5] 肖红叶, 戴慧敏, 杨泽, 等. 黑龙江省兴凯湖自然保护区生态系统固碳服务功能评价[J]. 地质与资源, 2020, 29(6): 570-573. doi: 10.13686/j.cnki.dzyzy.2020.06.010
Xiao H Y, Dai H M, Yang Z, et al. Evaluation on the ecosystem service function of carbon sequestration in Xingkai Lake Nature Reserve, Heilongjiang Province[J]. Geology and Resources, 2020, 29(6): 570-573. doi: 10.13686/j.cnki.dzyzy.2020.06.010
[6] 王宗明, 宋开山, 刘殿伟, 等. 1954~2005年三江平原沼泽湿地农田化过程研究[J]. 湿地科学, 2009, 7(3): 208-217.
Wang Z M, Song K S, Liu D W, et al. Process of land conversion from marsh into cropland in the Sanjiang Plain during 1954-2005[J]. Wetland Science, 2009, 7(3): 208-217.
[7] 肖红叶, 刘国栋, 杨泽, 等. 东北黑土区近半世纪土地利用变化时空特征分析[J]. 物探与化探, 2022, 46(5): 1037-1049.
Xiao H Y, Liu G D, Yang Z, et al. Spatio-temporal change in land uses of the black soil area in Northeast China over the past half century [J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1037-1049.
[8] 肖红叶, 房娜娜, 戴慧敏, 等. 基于外部性理论的湿地退化成因分析及对策研究[J]. 地质与资源, 2021, 30(5): 617-622. doi: 10.13686/j.cnki.dzyzy.2021.05.014
Xiao H Y, Fang N N, Dai H M, et al. Externality theory-based analysis on causes and countermeasures of wetland degradation[J]. Geology and Resources, 2021, 30(5): 617-622. doi: 10.13686/j.cnki.dzyzy.2021.05.014
[9] Lal R, Follett R F, Stewart B A, et al. Soil carbon sequestration to mitigate climate change and advance food security[J]. Soil Science, 2007, 172(12): 943-956.
[10] 李英臣, 宋长春. 氮磷输入对湿地生态系统碳蓄积的影响[J]. 土壤通报, 2012, 43(1): 224-229.
Li Y C, Song C C. Effects of exogenous nitrogen and phosphorus input on carbon accumulation in wetland system[J]. Chinese Journal of Soil Science, 2012, 43(1): 224-229.
[11] 姜柏志. 三江平原水稻主要种植区表层土壤有机碳密度空间分布及储量估算[D]. 哈尔滨: 东北农业大学, 2022.
Jiang B Z. Spatial distribution of topsoil organic carbon density and storage estimation in the main rice planting areas of the Sanjiang Plain[D]. Harbin: Northeast Agricultural University, 2022.
[12] 杨安广, 苗正红, 邱发富, 等. 基于GIS的三江平原表层土壤有机碳储量估算及空间分布研究[J]. 水土保持通报, 2015, 35(2): 155-158.
Yang A G, Miao Z H, Qiu F F, et al. A study on storage and distribution of soil organic carbon in Sanjiang Plain based on GIS[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 155-158.
[13] 崔虎群, 吴庭雯, 刘江涛, 等. 三江平原沼泽湿地和农田的演替过程对地下水的影响[J]. 水文地质工程地质, 2023, 50(6): 51-58.
Cui H Q, Wu T W, Liu J T, et al. Effects of succession processes of marsh wetland and farmland on groundwater in the Sanjiang Plain[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 51-58.
[14] 徐英德, 裴久渤, 李双异, 等. 东北黑土地不同类型区主要特征及保护利用对策[J]. 土壤通报, 2023, 54(2): 495-504.
Xu Y D, Pei J B, Li S Y, et al. Main characteristics and utilization countermeasures for black soils in different regions of Northeast China [J]. Chinese Journal of Soil Science, 2023, 54(2): 495-504.
[15] 杨亦恂, 姜晓旭, 李名升, 等. 三江平原土壤有机碳含量及其密度的空间变异特征分析[J]. 土壤通报, 2022, 53(6): 1313-1319.
Yang Y X, Jiang X X, Li M S, et al. Spatial variability of soil organic carbon content and density in the Sanjiang Plain[J]. Chinese Journal of Soil Science, 2022, 53(6): 1313-1319.
[16] 尹晓梅. 气候变化对三江平原湿地植被生产力影响模拟研究[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2013.
Yin X M. Simulation study of climate change impacts on wetlands productivity in Sanjiang Plain[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academyof Sciences, 2013.
[17] 王宗明, 刘殿伟, 宋开山, 等. 土壤类型对三江平原土地利用/覆被变化的影响[J]. 资源科学, 2008, 30(5): 694-701.
Wang Z M, Liu D W, Song K S, et al. Impact of soil type on land use/cover change in Sanjiang Plain[J]. Resources Science, 2008, 30 (5): 694-701.
[18] 陈克林. 《拉姆萨尔公约》——《湿地公约》介绍[J]. 生物多样性, 1995, 3(2): 119-121.
Chen K L. Introduction to the Ramsar Convention: The convention on wetlands[J]. Biodiversity Science, 1995, 3(2): 119-121. (in Chinese)
[19] 奚小环, 杨忠芳, 夏学齐, 等. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 2009, 16(1): 194-205.
Xi X H, Yang Z F, Xia X Q, et al. Calculation techniques for soil carbon storage of China based on multi-purpose geochemical survey [J]. Earth Science Frontiers, 2009, 16(1): 194-205.
[20] 刘国栋, 戴慧敏, 杨泽, 等. 三江平原土壤碳库时空变化和影响因素研究[J]. 现代地质, 2021, 35(2): 443-454.
Liu G D, Dai H M, Yang Z, et al. Temporal and spatial changes of soil carbon pool and its influencing factors in the Sanjiang Plain[J]. Geoscience, 2021, 35(2): 443-454.
[21] 卜宏凯. 北方典型农业区土壤碳库变化影响因素研究[D]. 北京: 中国地质大学, 2015.
Bu H K. The influence factors of the soil carbon storage in typical agricultural area of north China[D]. Beijing: China University of Geosciences, 2015.
[22] 宋长春, 王毅勇, 阎百兴, 等. 沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J]. 环境科学, 2004, 25(3): 150-154.
Song C C, Wang Y Y, Yan B X, et al. The changes of the soil hydrothermal condition and the dynamics of C, N after the mire tillage[J]. Environmental Science, 2004, 25(3): 150-154.
[23] 王充, 于东升, 张海东, 等. 典型黑土区农田土壤碳库及其影响因子显著性变化特征研究[J]. 土壤学报, 2014, 51(4): 845-852.
Wang C, Yu D S, Zhang H D, et al. Soil carbon stocks and changes in significance of its impact factors in typical black soil region of Northeast China[J]. Acta Pedologica Sinica, 2014, 51(4): 845-852.
[24] 刘汝海, 王起超, 王艳, 等. 小叶章湿地开垦后汞和有机质的动态变化[J]. 农业环境科学学报, 2003, 22(6): 647-650.
Liu R H, Wang Q C, Wang Y, et al. Soil carbon stocks and changes in significance of its impact factors in typical black soil region of Northeast China[J]. Journal of Agro-Environment Science, 2003, 22 (6): 647-650.
[25] 苗正红. 1980-2010年三江平原土壤有机碳储量动态变化[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2013.
Miao Z H. Changes and factors of soil carbon storage in the Sanjiang Plain, Northeast China from 1980s to 2010[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2013.
[26] 刘国栋. 三江湿地土壤碳库分布规律研究[D]. 长春: 吉林大学, 2012.
Liu G D. The distribution pattern of soil carbon pool in Sanjiang wetland, northeast of China[D]. Changchun: Jilin University, 2012.
[27] 刘子刚, 张坤民. 黑龙江省三江平原湿地土壤碳储量变化[J]. 清华大学学报(自然科学版), 2005, 45(6): 788-791.
Liu Z G, Zhang K M. Wetland soils carbon stock in the Sanjiang Plain[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(6): 788-791.
[28] 奚小环, 杨忠芳, 崔玉军, 等. 东北平原土壤有机碳分布与变化趋势研究[J]. 地学前缘, 2010, 17(3): 213-221.
Xi X H, Yang Z F, Cui Y J, et al. A study of soil carbon distribution and change in Northeast Plain[J]. Earth Science Frontiers, 2010, 17 (3): 213-221.
-