Influence of long-term operation of ground source heat pump on geothermal field in heat transfer area
-
摘要:
为了研究夏热冬冷地区地埋管地源热泵系统长期运行对换热区域地温场的影响,以南昌市某建筑地埋管地源热泵工程为例,对该示范工程4年间换热区域内外地温场变化特征和冷热堆积进行分析. 该工程设置了7个温度监测孔,分别在地埋管孔群中央以及周边由近及远不同距离对该系统运行4年间地埋管换热区域地温场进行了全面的监测. 分析结果表明:本地源热泵工程持续运行4年间,地埋管换热区域内外地温均随热泵运行呈现周期性变化;地温在垂向上随深度增加而增大,变化幅度逐渐减小;径向上,地埋管换热区周围地温波动随着远离地埋管呈现逐渐减小的趋势;该地源热泵系统持续运行4年中,地埋管孔群换热的热影响半径在3~6 m之间;系统持续运行4年后,孔群边界平均地温仅升高0.13 ℃,热堆积现象不明显. 该分析结果可为地埋管换热孔场地设计提供依据.
Abstract:To study the influence of long-term operation of ground source heat pump (GSHP) on geothermal field in heat transfer area of hot-summer and cold-winter regions, taking a GSHP project in Nanchang City as an example, this paper analyzes the variation characteristics of geothermal field and heat-cold accumulation inside and outside the heat transfer area of the demonstration project over four years of operation. The project arranges seven temperature monitoring holes in the center and surrounding areas of the GSHP group for comprehensive monitoring of geothermal field changes in heat transfer area during the four-year operation. The analysis results show that the geothermal temperature inside and outside the heat transfer area changes periodically with the four-year operation of GSHP; The geothermal temperature increases with increasing depth vertically, and the variation range decreases gradually; Radially, geothermal temperature variations around the heat transfer area gradually decreases with increasing distance from hole group; The thermal influence radius of the hole group is 3-6 m during the four-year operation; The average temperature at the hole group boundary increases merely by 0.13 ℃, indicating insignificant heat accumulation after the four-year operation. These findings provide references for the site design of GSHP heat transfer holes.
-
-
表 1 研究区地层特征
Table 1. Stratigraphic characteristics of the study area
序号 土层名称 层底深度/m 厚度/m 1 填土 0.7 0.7 2 粉质黏土 9.7 9.0 3 细砂 15.9 6.2 4 中砂 17.7 1.8 5 粗砂 23.7 6.0 6 砾砂 29.2 5.5 7 圆砾 36.6 7.4 8 强风化泥质粉砂岩 38.1 1.5 9 中风化泥质粉砂岩 48 9.9 10 微风化泥质粉砂岩 101.3 53.3 表 2 各测试孔岩土体热物性参数统计结果
Table 2. Statistics of thermophysical parameters of rock-soil body in test holes
测试孔编号 设定功率/kW 单位延米换热量/(W/m) 拟合系数k 岩土体导热系数/(W·m-1·K-1) 单位深度钻孔总热阻/(m2·K/W) 热扩散率/(m2/d) 13号 3 32.54 1.0997 2.36 0.209 0.065 6 63.65 2.0142 2.52 0.196 0.069 2号 3 28.32 1.1564 1.95 0.234 0.054 6 58.20 2.1611 2.14 0.215 0.059 表 3 17#监测孔运行一年后各深度处温度变化
Table 3. Temperature changes at different depths after one-year operation of No. 17 monitoring hole
深度/m 20 30 40 60 70 80 90 100 初始温度/℃ 19.46 18.64 18.4 20.8 20.8 16.38 20.28 14.38 温度/℃ 19.63 19.05 18.4 20.9 20.9 16.18 20.37 15.48 温差/℃ 0.17 0.41 0 0.1 0.1 -0.2 0.09 1.1 表 4 各监测孔2017—2021各年度6月上旬平均温度及温度变化
Table 4. Average temperatures and variation of monitoring holes in early June during 2017-2021
监测 T1 T2 T3 T4 T5 T2-T1 T3-T1 T4-T1 T5-T1 18 20.82 20.77 20.76 20.88 20.88 -0.05 -0.06 0.06 0.07 19 20.85 20.84 20.96 21.08 21.08 -0.01 0.10 0.23 0.23 20 20.81 20.84 20.86 20.88 20.91 0.03 0.05 0.07 0.10 平均值 20.83 20.82 20.86 20.95 20.96 -0.01 0.03 0.12 0.13 注:T1、T2、T3、T4、T5分别代表2017、2018、2019、2020、2021年温度. 温度单位:℃. -
[1] 王小清, 王万忠. 地埋管地源热泵系统运行期地温监测与分析[J]. 上海国土资源, 2013, 34(2): 76-79.
Wang X Q, Wang W Z. Soil-temperature monitoring and analysis of a ground source heat pump system during the operating period[J]. Shanghai Land & Resources, 2013, 34(2): 76-79.
[2] 庄宇, 潘小平. 地源热泵空调系统的换热工区岩土体温度变化研究[J]. 水文地质工程地质, 2010, 37(6): 134-138.
Zhuang Y, Pan X P. A study of the soil temperature change caused by GSHP air-conditioning system[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 134-138.
[3] 孙婉, 周念清, 黄坚, 等. 地源热泵系统运行换热区内外地温场变化特征分析[J]. 太阳能学报, 2017, 38(10): 2804-2810.
Sun W, Zhou N Q, Huang J, et al. Analysis of ground temperature field change characteristics for inside and outside heat exchange area of ground source heat pump system operation[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2804-2810.
[4] 姚木申, 袁小飞, 卢宝. 地源热泵系统地下温度场变化及其对系统COP的影响[J]. 制冷与空调, 2016, 16(8): 85-89, 96.
Yao M S, Yuan X F, Lu B. Change of underground temperature field of ground-source heat pump system and its influence on COP of system [J]. Refrigeration and Air-Conditioning, 2016, 16(8): 85-89, 96.
[5] 高世轩. 上海地源热泵系统对地质环境的热影响分析[J]. 上海国土资源, 2012, 33(1): 67-70.
Gao S X. Analyzing the influence of heat on the geological environment surrounding ground source heat pump system in Shanghai[J]. Shanghai Land & Resources, 2012, 33(1): 67-70.
[6] 梁欣阳, 赵雪红, 王青. 地埋管地源热泵工程运行换热区温度场变化特征分析[J]. 地下水, 2022, 44(6): 11-16.
Liang X Y, Zhao X H, Wang Q. Characteristics of temperature field in ground-source heat pump system[J]. Ground Water, 2022, 44(6): 11-16.
[7] 李新国, 赵军, 周倩. U型垂直埋管换热器管群周围土壤温度数值模拟[J]. 太阳能学报, 2004, 25(5): 703-707.
Li X G, Zhao J, Zhou Q. Numerical simulation on the ground temperature field around U pipe underground heat exchangers[J]. Acta Energiae Solaris Sinica, 2004, 25(5): 703-707.
[8] 刘俊, 张旭, 高军, 等. 地源热泵土壤温度恢复特性研究[J]. 暖通空调, 2008, 38(11): 147-150.
Liu J, Zhang X, Gao J, et al. Research of soil temperature restoration characteristics of ground-source heat pump systems[J]. Heating Ventilating & Air Conditioning, 2008, 38(11): 147-150.
[9] 张晓明, 吴建坤, 魏凌敏. 垂直U型管换热器周围土壤温度场的数值模拟[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(1): 111-114, 145.
Zhang X M, Wu J K, Wei L M. Numerical simulation on soil temperature field around vertical U-tube heat exchangers[J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(1): 111-114, 145.
[10] 姜振涛. 单U型垂直埋管换热器放热期土壤温度场的试验研究及数值分析[D]. 太原: 太原理工大学, 2012.
Jiang Z T. Experimental research and numerical analysis on soil temperature field of single U-tube heat exchanger vertically buried in heat release period[D]. Taiyuan: Taiyuan University of Technology, 2012.
[11] 张也, 骆祖江, 杜建国, 等. 基于热平衡原理的地埋管地源热泵系统开发利用潜力评价[J]. 太阳能学报, 2022, 43(9): 444-452.
Zhang Y, Luo Z J, Du J G, et al. Potential evaluation of development and utilization of ground source heat pump system based on heat balance principle[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 444-452.
[12] 管昌生, 万兆, 胡平放. 地源热泵地埋管多层岩土温度场的数值分析[J]. 武汉工程大学学报, 2011, 33(4): 42-45.
Guan C S, Wan Z, Hu P F. Numerical analysis on multilayer geotechnical temperature field of GSHP buried tube[J]. Journal of Wuhan Institute of Technology, 2011, 33(4): 42-45.
[13] 王洋, 王小清, 李雷雷, 等. 基于监测数据的地埋管地源热泵系统运行策略优化[J]. 暖通空调, 2018, 48(1): 158-163.
Wang Y, Wang X Q, Li L L, et al. Operation strategy optimization of ground source heat pump system based on monitoring data[J]. Heating Ventilating & Air Conditioning, 2018, 48(1): 158-163.
[14] 于慧明, 杨泽, 都基众. 基于层次分析法的沈阳市地埋管地源热泵适宜性评价[J]. 地质与资源, 2016, 25(6): 563-566. DOI: 10.13686/j.cnki.dzyzy.2016.06.009.
Yu H M, Yang Z, Du J Z. AHP-Based suitability zonation and assessment for the ground-source heat pump system in Shenyang City [J]. Geology and Resources, 2016, 25(6): 563-566. DOI: 10.13686/j.cnki.dzyzy.2016.06.009.
[15] Luo J, Rohn J, Bayer M, et al. Heating and cooling performance analysis of a ground source heat pump system in Southern Germany [J]. Geothermics, 2015, 53: 57-66. http://www.onacademic.com/detail/journal_1000036092863110_f415.html
[16] 姚远. 基于实测的地埋管地源热泵空调技术的节能与应用分析[D]. 武汉: 武汉科技大学, 2010: 28-33.
Yao Y. The energy conservation and technology using analysis of ground source heat pump based on actual survey[D]. Wuhan: Wuhan University of Science and Technology, 2010: 28-33.
[17] 张甫仁, 王乐祥, 李雪洋, 等. 重庆市浅层地温能开发利用地温场变化规律研究[J]. 重庆交通大学学报(自然科学版), 2018, 37 (2): 76-81.
Zhang F R, Wang L X, Li X Y, et al. Geo-temperature change law caused by shallow geothermal energy utilization in Chongqing[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(2): 76-81.
[18] 魏静, 高世轩, 孙婉. 上海地区地源热泵工程地温场特征试验研究[J]. 暖通空调, 2015, 45(6): 41-46.
Wei J, Gao S X, Sun W. Experimental study of ground temperature field characteristics surrounding GSHP system in Shanghai[J]. Heating Ventilating & Air Conditioning, 2015, 45(6): 41-46.
[19] 王子珑, 梅新忠, 王楠, 等. 地埋管地源热泵长期运行地温变化及系统性能监测与分析[J]. 河北工业大学学报, 2019, 48(6): 82-86, 92.
Wang Z L, Mei X Z, Wang N, et al. Monitoring and analysis of ground temperature variations and system performance of a buried-pipe ground source heat pump during the long-term operation[J]. Journal of Hebei University of Technology, 2019, 48(6): 82-86, 92.
[20] 李少华, 林清龙, 段新胜, 等. 杭州某地埋管地源热泵系统地温场监测与分析[J]. 暖通空调, 2020, 50(8): 70-74.
Li S H, Lin Q L, Duan X S, et al. Monitoring and analysis of ground temperature field of a GSHP in Hangzhou[J]. Heating Ventilating & Air Conditioning, 2020, 50(8): 70-74.
[21] 刘杰. 浅层地热能开发利用地质环境影响与监测系统建设研究[J]. 山东国土资源, 2018, 34(1): 49-55.
Liu J. Study on impact of the development and utilization of shallow geothermal energy to geological environment and monitoring system construction[J]. Shandong Land and Resources, 2018, 34(1): 49-55.
-