Spatiotemporal evolution pattern and driving force of land use in resource-based cities: A case study of Anshan City, Liaoning Province
-
摘要:
基于2000年、2010年和2020年3期土地利用/覆盖数据,综合运用土地利用动态度、地学信息图谱、弦图可视化和PLUS模型等方法,分析鞍山市2000—2020年土地利用时空演变特征及驱动力,并预测了鞍山市2040年土地利用格局. 结果表明:2000—2020年间,鞍山市耕地面积呈持续减少趋势,近20年共减少了496.10 km2,主要转出至林地、建设用地和草地. 林地呈持续增加趋势,近20年共增加了410.86 km2,主要转入自耕地和草地. 近20年来,鞍山市最主要的土地利用变化图谱有“耕地→林地”和“耕地→建设用地”,其中前者主要分布于海城市东南部-千山区一带,后者主要分布于千山区、海城市中部和台安县中部等地. 2000年以来,鞍山市土地利用变化速度为先快后慢,第一个10年综合土地利用动态度为1.29%,第二个10年其值为2.84%. 单地类来看,20年间增长最快的是建设用地,平均每年增加0.87%;减少最快的是耕地,平均每年减少0.60%. 模拟预测结果显示,2040年鞍山市耕地将进一步减少,驱动鞍山市耕地减少的主要因素有高程、降水量、气温等,其次为人口、GDP、到铁路和地方行政中心距离等社会经济因素.
Abstract:Based on land use/cover data for the years of 2000, 2010, and 2020, this study analyzes the spatiotemporal evolution characteristics and driving forces of land use in Anshan City during 2000-2020 and predicts the land use pattern in 2040 by ways of land use dynamic degree, geo-information maps, chord diagram visualization and PLUS model. The results show that the area of cultivated land continuously decreased, with a total reduction of 496.10 km2 during 2000-2020, primarily converted to forest, construction and grass lands. Forest land increased 410.86 km2 during the same period, mainly transferred from cultivated and grass lands. The most significant land use change in recent 20 years behaves as cultivated land → forest land and cultivated land → construction land, with the former predominantly distributed in the southeastern Haicheng City and Qianshan District, and the latter concentrated in Qianshan District, central Haicheng City, and central Tai'an County. Since 2000, the land use change rate has showed a fast-slow temporal pattern, with a comprehensive land use dynamic degree of 1.29% in the first decade and 2.84% in the second decade. In terms of single land type, construction land shows the fastest growth rate at 0.87% annually, while cultivated land experiences the most rapid decline at 0.60% per year over the 20-year span. The simulation prediction results indicate further reduction of cultivated land in Anshan City by 2040 due to the main driving factors of elevation, precipitation and temperature, followed by socioeconomic factors including population, GDP, and distances from railways and local administrative center.
-
Key words:
- resource-based city /
- land use /
- national land space /
- PLUS model /
- driving force /
- spatiotemporal evolution /
- Liaoning Province /
-
-
表 1 土地利用类型分类表
Table 1. Classification of land use types
编号 地类 含义 1 耕地 水田、灌溉旱地、雨养旱地、菜地、牧草种植地、大棚用地、茶园等 2 林地 落叶阔叶林、常绿阔叶林、落叶针叶林、常绿针叶林、混交林和疏林地等 3 草地 草原、草甸、稀树草原、荒漠草原,以及城市人工草地等 4 水体 江河、湖泊、水库、坑塘等 5 建设用地 城镇等各类居民地、工矿、交通设施等 表 2 鞍山市土地利用面积统计表
Table 2. Statistics of land use area in Anshan City
类别 面积/km2 占研究区比例/% 变化面积/km2 2000年 2010年 2020年 2000年 2010年 2020年 2000—2010年 2010—2020年 2000—2020年 耕地 4152.00 4032.22 3655.90 43.77% 42.51% 38.54% -119.79 -376.32 -496.10 林地 3851.70 3871.70 4262.56 40.61% 40.82% 44.94% 20.00 390.86 410.86 草地 600.17 632.22 537.84 6.33% 6.67% 5.67% 32.06 -94.38 -62.32 水体 42.33 38.70 44.24 0.45% 0.41% 0.47% -3.63 5.54 1.92 建设用地 839.10 910.45 984.74 8.85% 9.60% 10.38% 71.35 74.29 145.65 表 3 鞍山市土地利用动态度统计表
Table 3. Dynamic degree of land use in Anshan City
类别 耕地 林地 草地 水体 建设用地 综合土地利用动态度 2000—2010年 -0.29 0.05 0.53 -0.86 0.85 1.29 2010—2020年 -0.93 1.01 -1.49 1.43 0.82 2.84 2000—2020年 -0.60 0.53 -0.52 0.23 0.87 2.74 单位:%. 表 4 鞍山市2000—2010年土地利用变化矩阵
Table 4. Land use change matrix of Anshan City during 2000-2010
耕地 林地 草地 水体 建设用地 耕地 3829.87 117.97 70.73 4.56 128.87 林地 100.07 3622.27 119.83 2.88 6.65 草地 31.56 121.53 433.15 1.38 12.55 水体 4.38 5.56 2.45 29.52 0.41 建设用地 66.33 4.37 6.07 0.35 761.97 表 5 鞍山市2010—2020年土地利用变化矩阵
Table 5. Land use change matrix of Anshan City during 2010-2020
耕地 林地 草地 水体 建设用地 耕地 3335.38 478.89 43.93 8.86 165.16 林地 136.10 3580.88 138.39 4.09 12.24 草地 78.01 185.48 347.52 3.31 17.90 水体 4.65 4.14 2.24 26.06 1.60 建设用地 101.75 13.18 5.76 1.92 787.84 表 6 鞍山市2000—2020年土地利用变化矩阵
Table 6. Land use change matrix of Anshan City during 2000-2020
耕地 林地 草地 水体 建设用地 耕地 3507.06 428.67 33.83 7.23 175.21 林地 61.86 3682.28 96.90 1.79 8.88 草地 37.69 137.70 403.06 1.81 19.90 水体 2.28 4.72 1.55 32.42 1.36 建设用地 47.01 9.20 2.50 0.99 779.40 表 7 鞍山市2020—2040年土地利用变化矩阵
Table 7. Land use change matrix of Anshan City during 2020-2040
耕地 林地 草地 水体 建设用地 耕地 3226.08 288.22 0.75 0.77 131.68 林地 2.81 4241.44 1.46 0 4.21 草地 0.27 34.53 499.02 0.01 2.66 水体 0 0 0 42.06 0 建设用地 10.25 14.81 0.2 0 958.35 单位:km2. -
[1] Foley J A, DeFries R, Asner G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570-574. doi: 10.1126/science.1111772
[2] IGBP. Global land project: Science plan and implementation strategy [R]. Stockholm: IGBP, 2005.
[3] Turner Ⅱ B L, Lambin E F, Reenberg A. The emergence of land change science for global environmental change and sustainability[J]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20666-20671. doi: 10.1073/pnas.0704119104
[4] Lambin E F, Baulies X, Bockstael N et al. Land-use and land-cover change (LUCC): Implementation strategy[C]//A core project of the International Geospere-Biosphere Programme and the International Human Dimensions Programme on Global Environmental Change. Stockholm: IGBP, 1995: 125.
[5] 刘纪远, 刘明亮, 庄大方, 等. 中国近期土地利用变化的空间格局分析[J]. 中国科学(D辑), 2002, 32(12): 1031-1040.
Liu J Y, Liu M L, Zhuang D F, et al. Analysis of time-space patterns of recent landuse variations in China[J]. Sciences in China (D Series), 2002, 32(12): 1031-1040.
[6] Brandt J, Primdahl J, Reenberg A. Rural land-use and landscape dynamics: analysis of driving forces in space and time[C]//Land-use changes and their environmental impact in rural areas in Europe. 1999: 81-102.
[7] López E, Bocco G, Mendoza M, et al. Predicting land-cover and land-use change in the urban fringe: A case in Morelia City, Mexico[J]. Landscape and Urban Planning, 2001, 55(4): 271-285 doi: 10.1016/S0169-2046(01)00160-8
[8] Gao C J, Zhou P, Jia P, et al. Spatial driving forces of dominant land use/land cover transformations in the Dongjiang River watershed, Southern China[J]. Environmental Monitoring and Assessment, 2016, 188(2): 84. doi: 10.1007/s10661-015-5088-z
[9] 史培军, 陈晋, 潘耀忠. 深圳市土地利用变化机制分析[J]. 地理学报, 2000, 55(2): 151-160. doi: 10.3321/j.issn:0375-5444.2000.02.003
Shi P J, Chen J, Pan Y Z. Landuse change mechanism in Shenzhen City[J]. Acta Geographica Sinica, 2000, 55(2): 151-160. doi: 10.3321/j.issn:0375-5444.2000.02.003
[10] 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J]. 地理学报, 2009, 64(12): 1411-1420.
Liu J Y, Zhang Z X, Xu X L, et al. Spatial patterns and driving forces of land use change in China in the early 21st Century[J]. Acta Geographica Sinica, 2009, 64(12): 1411-1420.
[11] Wang J, Chen Y Q, Shao X M, et al. Land-use changes and policy dimension driving forces in China: Present, trend and future[J]. Land Use Policy, 2012, 29(4): 737-749. doi: 10.1016/j.landusepol.2011.11.010
[12] Du X D, Jin X B, Yang X L, et al. Spatial pattern of land use change and its driving force in Jiangsu Province[J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 3215-3232. doi: 10.3390/ijerph110303215
[13] 杨佳佳, 吕骏超, 金珊合, 等. 全球黑土区耕地动态变化及其驱动力Logistic回归分析[J]. 地质与资源, 2023, 32(5): 584-591. doi: 10.13686/j.cnki.dzyzy.2023.05.008
Yang J J, Lyu J C, Jin S H, et al. Farmland dynamic change and its driving force analysis in global black soil regions based on logistic regression model[J]. Geology and Resources, 2023, 32(5): 584-591. doi: 10.13686/j.cnki.dzyzy.2023.05.008
[14] 王璐晨, 韩海辉, 张俊, 等. 塔里木河流域土地利用及人类活动强度的时空演化特征研究[J]. 中国地质, 2024, 51(1): 203-220.
Wang L C, Han H H, Zhang J, et al. Spatio-temporal evolution of land use and human activity intensity in the Tarim River Basin, Xinjiang[J]. Geology in China, 2024, 51(1): 203-220.
[15] 王鹏, 赵君, 阎晓娟, 等. 动态时空视角下黄河流域城市土地利用效率的集聚演化特征[J]. 中国地质, 2023, 50(2): 506-520.
Wang P, Zhao J, Yan X J, et al. Agglomeration and evolution characteristics of urban land-use efficiency under a dynamic spatio-temporal perspective in the Yellow River Basin[J]. Geology in China, 2023, 50(2): 506-520.
[16] 黄钰清, 李骁尧, 于强, 等. 1995—2018年黄河流域土地利用变化及驱动力分析[J]. 西北林学院学报, 2022, 37(6): 113-121.
Huang Y Q, Li X Y, Yu Q, et al. An analysis of land use change and driving forces in the Yellow River Basin from 1995 to 2018[J]. Journal of Northwest Forestry University, 2022, 37(6): 113-121.
[17] 江山, 石旭飞, 郭常来, 等. 基于CA-Markov模型的大凌河流域土地利用变化与模拟预测研究[J]. 地质与资源, 2023, 32(5): 624-632. doi: 10.13686/j.cnki.dzyzy.2023.05.013
Jiang S, Shi X F, Guo C L, et al. Land use changes and simulation prediction in Daling River Basin based on CA-Markov model[J]. Geology and Resources, 2023, 32(5): 624-632. doi: 10.13686/j.cnki.dzyzy.2023.05.013
[18] 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74 (3): 446-459.
Zhu W B, Zhang J J, Cui Y P, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin[J]. Acta Geographica Sinica, 2019, 74 (3): 446-459.
[19] 朱康文, 李月臣, 周梦甜. 基于CLUE-S模型的重庆市主城区土地利用情景模拟[J]. 长江流域资源与环境, 2015, 24(5): 789-797.
Zhu K W, Li Y C, Zhou M T. Land use scenario simulation of the main city of Chongqing based on the CLUE-S model[J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 789-797.
[20] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39 (3): 397-409.
Liu X J, Li X, Liang X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3): 397-409.
[21] 高禄年, 董会和. 城市收缩背景下的资源型城市发展与效率评价: 以鞍山市为例[J]. 中国矿业, 2022, 31(3): 42-48.
Gao L N, Dong H H. Development and efficiency evaluation of resource-based cities under the background of urban shrinkage: A case study of Anshan City[J]. China Mining Magazine, 2022, 31 (3): 42-48.
[22] 王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1): 81-87.
Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999, 18(1): 81-87.
[23] Liang X, Guan Q F, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569. http://www.xueshufan.com/publication/3109268000
[24] 李琛, 高彬嫔, 吴映梅, 等. 基于PLUS模型的山区城镇景观生态风险动态模拟[J]. 浙江农林大学学报, 2022, 39(1): 84-94.
Li C, Gao B P, Wu Y M, et al. Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model[J]. Journal of Zhejiang A&F University, 2022, 39(1): 84-94.
[25] 曲衍波, 王世磊, 朱伟亚, 等. 黄河三角洲国土空间演变的时空分异特征与驱动力分析[J]. 农业工程学报, 2021, 37(6): 252-263.
Qu Y B, Wang S L, Zhu W Y, et al. Spatial-temporal differentiation characteristics and driving force of territorial space evolution in the Yellow River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 252-263.
-