-
摘要:
艾钛锌矿首次在澳大利亚Broken Hill市的North Mine矿床被发现,随后在世界其他矿床中也有少量发现. 然而,对于该矿物的总体报道较为稀缺,并且其化学成分、形成地质作用等方面的研究相对不足. 国内首次在湘东北连云山岩体发现艾钛锌矿,此前尚无相关报道. 经过详细的野外地质调查、岩相学观察、电子探针定量分析等一系列工作,对其化学成分和形成地质作用进行了深入研究. 艾钛锌矿赋存于连云山花岗岩体外围的伟晶岩脉中,主要化学成分为TiO2、ZnO、FeO、MnO,为含Fe、Mn、Zn的类质同象固熔体矿物. 综合地质条件分析得出,艾钛锌矿的形成与岩浆晚期的热液-伟晶作用密切相关. 艾钛锌矿的发现不仅充实了区域内的基础地质资料,而且为理解区内基础地质过程以及铌钽等稀有金属成矿机制提供了新的视角.
Abstract:Ecandrewsite was first discovered in North Mine deposit of Broken Hill, Australia, and has since been found in minor quantities in other deposits worldwide. However, comprehensive reports on this mineral remain scarce, with limited research on its chemical compositions and genetic geological process. In China, ecandrewsite was first identified in Lianyunshan pluton of northeastern Hunan Province. Through detailed field geological survey, petrographic observation, and electron probe microanalysis(EPMA), the paper studies its chemical characteristics and geological formation processes systematically. The ecandrewsite is occurred in the pegmatite dikes around the Lianyunshan granite pluton, with the primary chemical components of TiO2, ZnO, FeO, and MnO, presented as the isomorphic solid solution mineral containing Fe, Mn, and Zn. Combined with the geological conditions, it is considered that the formation of ecandrewsite is closely related with the hydrothermal-pegmatitization in the late magmatic stage. The discovery of ecandrewsite not only enriches the basic regional geological data, but also provides new insights into understanding the geological evolution and metallogenic mechanism of rare metals such as Nb and Ta in the area.
-
Key words:
- ecandrewsite /
- pegmatite dike /
- solid solution /
- Lianyunshan pluton /
- Hunan Province
-
-
表 1 艾钛锌矿电子探针分析结果
Table 1. EPMA analysis results of ecandrewsite
测点编号 CaO TiO2 MgO FeO MnO ZnO Total 1 0.040 53.137 - 5.744 9.800 29.596 98.317 2 0.046 52.516 0.006 6.146 11.431 27.551 97.696 3 0.058 52.525 0.008 6.453 13.801 25.956 98.801 4 0.070 52.476 - 7.798 17.305 19.970 97.619 5 0.054 53.764 0.004 6.467 16.571 22.334 99.194 6 0.033 53.115 0.002 5.880 14.686 25.256 98.972 7 0.059 52.048 - 6.726 12.327 26.293 97.453 8 0.037 52.421 0.095 5.915 15.609 24.817 98.894 9 0.044 52.717 0.026 4.994 13.059 27.632 98.472 含量单位:%. “-”表示低于检测限. 表 2 以3个氧原子为基准计算阳离子数及艾钛锌矿化学式
Table 2. Calculation of cation numbers and chemical formula of ecandrewsite based on three oxygen atoms
序号 Ti Fe Mn Zn 化学式 1 1.04 0.13 0.22 0.57 (Zn0.57Fe0.13Mn0.22)Ti1.04O3 2 1.04 0.13 0.25 0.53 (Zn0.53Fe0.13Mn0.25)Ti1.04O3 3 1.03 0.14 0.30 0.50 (Zn0.5Fe0.14Mn0.3)Ti1.03O3 4 1.03 0.17 0.38 0.38 (Zn0.38Fe0.17Mn0.38)Ti1.03O3 5 1.04 0.14 0.36 0.42 (Zn0.42Fe0.14Mn0.36)Ti1.04O3 6 1.03 0.13 0.32 0.48 (Zn0.48Fe0.13Mn0.32)Ti1.03O3 7 1.03 0.15 0.28 0.51 (Zn0.51Fe0.15Mn0.28)Ti1.03O3 8 1.02 0.13 0.34 0.48 (Zn0.48Fe0.13Mn0.34)Ti1.02O3 9 1.03 0.11 0.29 0.53 (Zn0.53Fe0.11Mn0.29)Ti1.03O3 -
[1] Brown R N, Riley J F, Schultz P K. Contributions to Australasian mineralogy: 1. A new zinc-bearing ilmenite from Broken Hill[J]. AMDEL Bulletin, 1970, 10: 48-50.
[2] Birch W D, Burke E A J, Wall V J, et al. Ecandrewsite, the zinc analogue of ilmenite, from Little Broken Hill, New South Wales, Australia, and the San Valentin Mine, Sierra de Cartegena, Spain[J]. Mineralogical Magazine, 1988, 52(365): 237-240. http://journals.cambridge.org/abstract_S0026461X00018570
[3] Worner H K, Mitchell R W, Segnit E R. Minerals of Broken Hill[M]. Melbourne: Australian Mining & Smelting Limited, 1982: 68-195.
[4] Jambor J L, Puziewicz J. New mineral names[J]. American Mineralogist, 1989, 74: 500-505.
[5] Whitney D L, Hirschmann M, Miller M G. Zincian ilmenite-ecandrewsite from a pelitic schist, Death Valley, California, and the paragenesis of (Zn, Fe)TiO3 solid solution in metamorphic rocks[J]. The Canadian Mineralogist, 1993, 31(2): 425-436. http://canmin.geoscienceworld.org/lookup/georef/1995-029522
[6] Mitchell R H, Liferovich R P. Ecandrewsite-zincian pyrophanite from lujavrite, Pilansberg alkaline complex, South Africa[J]. The Canadian Mineralogist, 2004, 42(4): 1169-1178.
[7] Ghosh B, Praveen M N. Indicator minerals as guides to base metal sulphide mineralisation in Betul Belt, Central India[J]. Journal of Earth System Science, 2008, 117(4): 521-536. http://www.onacademic.com/detail/journal_1000034548596710_4218.html
[8] Espeche M J, Lira R. Ecandrewsite (ZnTiO3) in amphibolites, Sierras de Córdoba, Argentina: Mineral chemistry and comparison with different worldwide paragenetic occurrences[J]. The Canadian Mineralogist, 2022, 60(4): 677-686.
[9] Madayipu N, Li H, Algeo T J, et al. Chemical and boron isotopic compositions of tourmalines from the Lianyunshan Nb-Ta pegmatite in northeastern Hunan, China: Insights into fluid and metallogenic sources[J]. Ore Geology Reviews, 2023, 152: 105263. http://dx.doi.org/10.1016/j.oregeorev.2022.105263
[10] Madayipu N, Li H, Algeo T J, et al. Long-lived Nb-Ta mineralization in Mufushan, NE Hunan, South China: Geological, geochemical, and geochronological constraints[J]. Geoscience Frontiers, 2023, 14 (1): 101491. http://dx.doi.org/10.1016/j.gsf.2022.101491
[11] Madayipu N, Li H, Elatikpo S M, et al. Magmatic-hydrothermal evolution of long-lived Nb-Ta-(Sn) mineralization in Lianyunshan, NE Hunan, South China[J]. GSA Bulletin, 2023, 135(9/10): 2691-2709. http://www.nstl.gov.cn/paper_detail.html?id=dc05a4bc970962219442f459cc8d5e8d
[12] 文春华, 陈剑锋, 曹创华. 湖南连云山矿集区稀有金属伟晶岩成矿作用研究[J]. 地质论评, 2020, 66(S1): 135-136.
Wen C H, Chen J F, Cao C H. Study on the mineralization of rare metal pegmatite in Lianyunshan ore district, Hunan Province[J]. Geological Review, 2020, 66(S1): 135-136.
[13] 迟惠中, 王大千, 李经国, 等. 山东蒙阴金伯利岩中铬铁矿电子探针波谱分析[J]. 地质与资源, 2021, 30(2): 214-218. doi: 10.13686/j.cnki.dzyzy.2021.02.014
Chi H Z, Wang D Q, Li J G, et al. Electron probe spectrum analysis of chromite in Mengyin kimberlites, Shandong Province[J]. Geology and Resources, 2021, 302): 214-218. doi: 10.13686/j.cnki.dzyzy.2021.02.014
[14] 李丽君, 何炼, 马健生, 等. 能量色散X射线荧光光谱法现场测定地质样品中20种元素[J]. 地质与资源, 2023, 32(1): 120-126. doi: 10.13686/j.cnki.dzyzy.2023.01.015
Li L J, He L, Ma J S, et al. On-site determination of 20 elements in geological samples by energy dispersive X-ray fluorescence spectrometry [J]. Geology and Resources, 2023, 32(1): 120-126. doi: 10.13686/j.cnki.dzyzy.2023.01.015
[15] Mitchell R H, Liferovich R P. The pyrophanite-ecandrewsite solid-solution: Crystal structures of the Mn1-xZnxTiO3 series (0.1 ≤ x ≤ 0.8)[J]. The Canadian Mineralogist, 2004, 42(6): 1871-1880. http://dx.doi.org/10.2113/gscanmin.42.6.1871
[16] 林文蔚, 彭丽君. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J]. 长春地质学院学报, 1994, 24(2): 155-162.
Lin W W, Peng L J. The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA data[J]. Journal of Changchun University of Earth Sciences, 1994, 24(2): 155-162.
[17] 肖平, 刘军. 多硅白云母晶体化学式几种方法的讨论——用电子探针数据计算[J]. 华东地质学院学报, 2001, 24(1): 11-14.
Xiao P. Liu J. Discussion on the methods for calculating the crystal chemical formula of phengite by the data from electron probe[J]. Jornal of East China Geological Institute, 2001, 24(1): 11-14.
[18] Ghosh B, Praveen M N. Garnet-gahnite-staurolite relations and occurrence of ecandrewsite from the Koparpani base metal sulfide prospect, Betul belt, Central India[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2007, 184(1): 105-116. http://www.schweizerbart.de/content/papers_preview/download/57568
[19] Plimer I R. The ilmenite-ecandrewsite solid solution series, Broken Hill, Australia[C]//Phylogeny and the Classification of Fossil and Recent Organisms. Stuttgart: Schweizerbart'sche, 1990: 529-536.
[20] Suwa K, Enami M, Hiraiwa I, et al. Zn-Mn ilmenite in the Kuiqi granite from Fuzhou, Fujian Province, East China[J]. Mineralogy and Petrology, 1987, 36(2): 111-120. doi: 10.1007/BF01164484
[21] 黄典豪. 论花岗伟晶岩脉的成因[C]//中国地质科学院矿床地质研究所文集(6). 北京: 中国地质学会, 1983: 10.
Huang D H. On genesis of the granitic pegmatite veins[C]//Proceedings of Institute of Mineral Deposit Geology, Chinese Academy of Geological Sciences(6). Beijing: Geological Society of China, 1983: 10. (in Chinese)
[22] 周芳春, 李建康, 刘翔, 等. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义[J]. 地质学报, 2019, 93(6): 1392-1404.
Zhou F C, Li J K, Liu X, et al. Geochemical characteristics and genetic significance of ore bodies in Renli Nb-Ta deposit, Hunan Province[J]. Acta Geologica Sinica, 2019, 93(6): 1392-1404
[23] 柏道远, 唐分配, 李彬, 等. 湖南省成矿地质事件纲要[J]. 中国地质, 2022, 49(1): 151-180.
Bai D Y, Tang F P, Li B, et al. Summary of main mineralization events in Hunan Province[J]. Geology in China, 2022, 49(1): 151-180.
[24] 姚春彦, 王天刚, 倪培, 等. 铌钽矿床类型、特征与研究进展[J]. 中国地质, 2021, 48(6): 1748-1758.
Yao C Y, Wang T G, Ni P, et al. Metallogenic types, characteristics and research progress of Nb-Ta deposits[J]. Geology in China, 2021, 48(6): 1748-1758.
[25] Madayipu N, Li H, Ghaderi M, et al. Contrasting Nb-Ta mineralization between the Mufushan and Lianyunshan granites, South China: Evidence from whole-rock and zircon geochemistry and geochronology [J]. Ore Geology Reviews, 2023, 158: 105487. http://www.sciencedirect.com/science/article/pii/S0169136823002032
[26] Linnen R L, Keppler H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2): 213-227. http://www.onacademic.com/detail/journal_1000034462449310_c4e1.html
-