Stability evaluation of goaf collapse sites in typical coal mining subsidence areas
-
摘要:
采空塌陷场地稳定性评价是后续开展工程建设的重要依据. 首先采用概率积分法计算采空区地表剩余移动变形值,包括剩余倾斜值、剩余曲率值、剩余水平变形值,然后定性与定量相结合,建立了采煤沉陷速率、累计沉陷量、地表剩余移动变形、采深采厚比、地面塌陷及地裂缝宏观稳定性等场地稳定性评价指标体系. 本研究以沈阳市某采煤沉陷区为例开展场地稳定性评价. 结果表明,不稳定区分布在研究区西部,面积约为1.64 km2,占全区面积的5.13%. 区内采深采厚比大于等于60,当前地表沉陷速率较高(≥ 60 mm/a),剩余地表移动变形值较大,地面塌陷、地裂缝较发育且仍在发展. 基本稳定区主要位于研究区东部,面积为2.34 km2,约占总面积的7.32%. 区内采空区深厚比介于35~60,地表沉陷速率为30~60 mm/a,剩余变形移动值中等,地面塌陷、地裂缝已基本稳定.
Abstract:The stability evaluation of goaf collapse sites serves as a crucial basis for subsequent engineering construction. The study first adopts the probability integration method to calculate the surface residual movement and deformation values in goaf areas, including residual tilt value, residual curvature and residual horizontal deformation value, and then establishes the site stability evaluation index system by integrating qualitative and quantitative approaches, incorporating factors such as coal mining subsidence rate, cumulative subsidence, surface residual movement and deformation, mining depth-to-thickness ratio, and macroscopic stability of ground collapses and ground fissures. Taking a coal mining subsidence area in Shenyang City as an example for site stability evaluation, the results show that the unstable zone is located in the western part of the study area, covering approximately 1.64 km2, accounting for 5.13% of the total area. In this zone, the mining depth-to-thickness ratio is greater than or equal to 60, with relatively high current surface subsidence rate(≥ 60 mm/a) and large residual surface movement and deformation values, and the ground collapses and fissures are well-developed and still evolving. The basically stable zone is primarily situated in the eastern part, with an area of 2.34 km2, representing about 7.32% of the total area. The mining depth-to-thickness ratio is 35-60, with the surface subsidence rate of 30-60 mm/a and moderate residual movement and deformation values. The ground collapse and fissure have largely stabilized.
-
-
表 1 不同时间的削减系数参考值
Table 1. Reference values of reduction coefficient at different times
开采结束时间/a 1 2 5 10 20 <20 削减系数(η) 0.75 0.825 0.9 0.938 0.975 0.99 表 2 地表沉陷计算参数
Table 2. Calculation parameters of surface subsidence
采区 工作面编号 停采时间 下沉系数(q) 削减系数(η) 剩余下沉系数(q′) 水平移动系数(b) 主要影响角正切(tanβ) 南二采区 1# 0.86 0 0.86 0.25 2.5 2# 2021-11 0.86 0.75 0.22 0.25 2.5 西一采区 13# 2020-12 0.86 0.825 0.15 0.25 2.5 15# 2021-12 0.86 0.75 0.22 0.25 2.5 12# 2019-06 0.86 0.862 0.12 0.25 2.5 14# 2016-09 0.86 0.910 0.08 0.25 2.5 10# 2018-02 0.86 0.9 0.09 0.25 2.5 2# 2013-06 0.86 0.934 0.06 0.25 2.5 1# 2011-10 0.86 0.942 0.05 0.25 2.5 11# 2017-03 0.86 0.922 0.07 0.25 2.5 7# 2015-06 0.86 0.919 0.07 0.25 2.5 3# 2014-02 0.86 0.930 0.06 0.25 2.5 5# 2018-10 0.86 0.875 0.11 0.25 2.5 6# 2020-03 0.86 0.844 0.13 0.25 2.5 表 3 按地表剩余移动变形值确定的场地稳定性等级
Table 3. Site stability grade by surface residual movement and deformation values
稳定状态 下沉速度Vw/(mm/d)及下沉值/mm 地表剩余移动变形值 剩余倾斜值Δi/(mm/m) 剩余曲率值ΔK/(10-3/m) 剩余水平变形值Δε/(mm/m) 稳定 Vw<1.0,半年下沉值<30 Δi<3 ΔK<0.2 Δε<2 基本稳定 Vw<1.0,半年下沉值≥30 3≤Δi<10 0.2≤ΔK<0.6 2≤Δε<6 不稳定 Vw≥1.0 Δi≥10 ΔK≥0.6 Δε≥6 表 4 场地稳定性评价分区标准
Table 4. Zoning standards of site stability evaluation
影响因素 不稳定区(Ⅰ) 基本稳定区(Ⅱ) 稳定区(Ⅲ) 地表沉陷速率/(mm/a) ≥60 30~60 <30 累计沉陷量/mm ≥300 150~300 <150 地表剩余移动变形 Δi≥10,ΔK≥0.6,Δε≥6 3≤Δi<10,0.2≤ΔK<0.6,2≤Δε<6 Δi<3,ΔK<0.2,Δε<2 采深采厚比 <35 35~60 ≥60 地面塌陷、地裂缝宏观稳定性 不稳定 基本稳定 稳定 因素间逻辑 或(∪) 非Ⅰ、Ⅲ区 与(∩) -
[1] 刘义新, 张俊英, 贾新果. 采煤沉陷区建光伏电站采空区地基稳定性评估[C]//第三届煤炭科技创新高峰论坛——煤炭绿色开发与清洁利用技术与装备论文集. 北京: 中国煤炭工业协会, 2016: 220-224.
Liu Y X, Zhang J Y, Jia X G. Evaluation on goaf foundation stability of photovoltaic plant in mining subsidence area[C]//The 3rd Coal Science and Technology Innovation Summit Forum: Coal Green Development and Clean Utilization Technology and Equipment. Beijing: China National Coal Association, 2016: 220-224.
[2] 李伟. 高速铁路下软岩采空区稳定性及变形控制研究[D]. 青岛: 青岛理工大学, 2018.
Li W. Study on stability and deformation control of soft rock goaf under high-speed railway[D]. Qingdao: Qingdao University of Technology, 2018.
[3] 张立才, 刘燕龙. 河北唐山某老采煤沉陷区建设场地地基稳定性评价[J]. 中国煤炭地质, 2013, 25(12): 59-63.
Zhang L C, Liu Y L. Construction site foundation stability assessment in an old gob subsidence area in Tangshan, Hebei[J]. Coal Geology of China, 2013, 25(12): 59-63.
[4] 郭松, 郭广礼, 李怀展, 等. 基于主成分层次聚类模型的采空塌陷场地稳定性评价[J]. 中国地质灾害与防治学报, 2020, 31(6): 116-121.
Guo S, Guo G L, Li H Z, et al. Goaf-collapse sites stability evaluation based on principal component hierarchical clustering model[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 116-121.
[5] 郭广礼. 老采空区上方建筑地基变形机理及其控制[M]. 徐州: 中国矿业大学出版社, 2001.
Guo G L. Deformation mechanism and control of building foundation above old goaf area[M]. Xuzhou: China University of Mining and Technology Press, 2001. (in Chinese)
[6] 郭广礼, 何国清, 崔曙光. 部分开采老采空区覆岩稳定性分析[J]. 矿山压力与顶板管理, 2003, 20(3): 70-73.
Guo G L, He G Q, Cui S G. Analysis of overlying strata stability over abandoned goaf with partial mining[J]. Journal of Mining & Safety Engineering, 2003, 20(3): 70-73.
[7] 汪吉林, 姜波. 煤矿采空区稳定性的模糊综合评判[J]. 矿山压力与顶板管理, 2005, 22(2): 29-31, 34.
Wang J L, Jiang B. Using fuzzy comprehensive judgement to evaluate the stability of coal caved area[J]. Journal of Mining & Safety Engineering, 2005, 22(2): 29-31, 34.
[8] 王正帅, 刘冰晶, 邓喀中. 老采空区稳定性的模糊可拓评价模型[J]. 地下空间与工程学报, 2016, 12(2): 553-559.
Wang Z S, Liu B J, Deng K Z. Fuzzy extension assessment model of old goaf stability[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 553-559.
[9] 丁陈建, 汪吉林. 神经网络法的采空区地基稳定性评价[J]. 采矿与安全工程学报, 2009, 26(2): 208-211.
Ding C J, Wang J L. Using artificial neural network to assess the stability of goaf foundation[J]. Journal of Mining & Safety Engineering, 2009, 26(2): 208-211.
[10] 王正帅. 老采空区残余沉降非线性预测理论及应用研究[D]. 徐州: 中国矿业大学, 2011.
Wang Z S. Study on the non-linear prediction theory of old goaf residual subsidence and its application[D]. Xuzhou: China University of Mining and Technology, 2011.
[11] 汪吉林, 吴圣林, 丁陈建, 等. 复杂地貌多煤层采空区的稳定性评价[J]. 煤炭学报, 2009, 34(4): 466-471.
Wang J L, Wu S L, Ding C J, et al. Stability evaluation of mine goaf with multi-coal seams and complex land form[J]. Journal of China Coal Society, 2009, 34(4): 466-471.
[12] 葛伟亚, 王睿, 张庆, 等. 城市地下空间资源综合利用评价工作构想[J]. 地质通报, 2021, 40(10): 1601-1608.
Ge W Y, Wang R, Zhang Q, et al. Conception of comprehensive utilization evaluation of urban underground space resources[J]. Geological Bulletin of China, 2021, 40(10): 1601-1608.
[13] 林良俊, 李亚民, 葛伟亚, 等. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质, 2017, 44(6): 1086-1101.
Lin L J, Li Y M, Ge W Y, et al. General ideas for urban geological survey in China and key theory and techniques[J]. Geology in China, 2017, 44(6): 1086-1101.
[14] 郭广礼, 查剑锋. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社有限责任公司, 2020.
Guo G L, Zha J F. Mining subsidence science[M]. Xuzhou: China University of Mining and Technology Press, 2020. (in Chinese)
[15] 杨梅忠, 任秀芳, 于远祥. 概率积分法在煤矿采空区地表变形动态评价中的应用[J]. 西安科技大学学报, 2007, 27(1): 39-42.
Yang M Z, Ren X F, Yu Y X. Application of probability integration to dynamic appraisal of surface distortion in coal depletion region[J]. Journal of Xi'an University of Science and Technology, 2007, 27 (1): 39-42.
[16] 尹云旺. 基于MATLAB和概率积分法的预计程序开发与应用[D]. 青岛: 山东科技大学, 2015.
Yin Y W. Prediction system based on the probability integration method and MATLAB[D]. Qingdao: Shandong University of Science and Technology, 2015. (in Chinese)
[17] 孙晖, 王起超. 某煤矿采空区场地稳定性综合评价[J]. 现代矿业, 2018, 34(6): 21-27.
Sun H, Wang Q C. Integrated evaluation on site stability of goaf of a coal mine[J]. Modern Mining, 2018, 34(6): 21-27.
[18] 苏栋, 黄茂隆, 韩文龙, 等. 城市深层地下空间地质环境韧性评估模型与应用[J]. 中国地质, 2024, 51(1): 157-169.
Su D, Huang M L, Han W L, et al. Evaluation model of geological environment resilience in the urban deep underground space and its application[J]. Geology in China, 2024, 51(1): 157-169.
[19] 张静, 倪金, 马诗敏, 等. 基于GIS的大连市金普新区洪水淹没分析[J]. 地质与资源, 2021, 30(5): 590-594. doi: 10.13686/j.cnki.dzyzy.2021.05.010
Zhang J, Ni J, Ma S M, et al. GIS-based analysis of flood submergence in Jinpu New District, Dalian City[J]. Geology and Resources, 2021, 30(5): 590-594. doi: 10.13686/j.cnki.dzyzy.2021.05.010
[20] 张静, 马宏伟, 郇恒飞, 等. 基于AHP的大连金普新区地下空间开发利用地质条件适宜性评价[J]. 地质通报, 2023, 42(9): 1603-1609.
Zhang J, Ma H W, Huan H F, et al. Suitability evaluation of geological conditions for underground space exploitation and utilization in Jinpu New Area of Dalian based on AHP[J]. Geological Bulletin of China, 2023, 42(9): 1603-1609.
[21] 石旭飞, 江山, 郭晓东, 等. 长吉图经济区地质灾害易发性区划研究[J]. 地质与资源, 2022, 31(5): 660-666. doi: 10.13686/j.cnki.dzyzy.2022.05.010
Shi X F, Jiang S, Guo X D, et al. Vulnerability zoning of main geological hazards in Changchun-Jilin-Tumen Economic Zone[J]. Geology and Resources, 2022, 31(5): 660-666. doi: 10.13686/j.cnki.dzyzy.2022.05.010
-