膨胀微晶石墨的制备及对Pb2+的吸附行为

刘波, 孙红娟, 彭同江, 段佳琪. 膨胀微晶石墨的制备及对Pb2+的吸附行为[J]. 矿产保护与利用, 2018, (5): 67-72, 78. doi: 10.13779/j.cnki.issn1001-0076.2018.05.009
引用本文: 刘波, 孙红娟, 彭同江, 段佳琪. 膨胀微晶石墨的制备及对Pb2+的吸附行为[J]. 矿产保护与利用, 2018, (5): 67-72, 78. doi: 10.13779/j.cnki.issn1001-0076.2018.05.009
LIU Bo, SUN Hongjuan, PENG Tongjiang, DUAN Jiaqi. Preparation of Expanded Microcrystalline Graphite and Its Adsorption Behavior of Pb2+[J]. Conservation and Utilization of Mineral Resources, 2018, (5): 67-72, 78. doi: 10.13779/j.cnki.issn1001-0076.2018.05.009
Citation: LIU Bo, SUN Hongjuan, PENG Tongjiang, DUAN Jiaqi. Preparation of Expanded Microcrystalline Graphite and Its Adsorption Behavior of Pb2+[J]. Conservation and Utilization of Mineral Resources, 2018, (5): 67-72, 78. doi: 10.13779/j.cnki.issn1001-0076.2018.05.009

膨胀微晶石墨的制备及对Pb2+的吸附行为

  • 基金项目:
    国家自然科学基金项目(41272051,U1630132);西南科技大学博士基金(18zx7104)
详细信息

Preparation of Expanded Microcrystalline Graphite and Its Adsorption Behavior of Pb2+

More Information
  • 为进一步拓展微晶石墨的应用领域,将其氧化-膨胀获得膨胀微晶石墨,并用于含铅废水处理。通过静态吸附试验考察初始Pb2+浓度、反应时间、pH和温度等因素对膨胀微晶石墨吸附性能的影响。结果表明,微晶石墨经氧化膨胀制备的膨胀微晶石墨颗粒呈"蠕虫"状,含有丰富的网络孔隙结构,孔径集中在2~5 nm。膨胀微晶石墨对Pb2+的吸附行为受初始浓度、时间、pH和温度的影响,吸附量与初始浓度、时间和pH呈正相关,与温度呈负相关。Langmuir等温吸附模型和准一级动力学模型较好地拟合了吸附过程。热力学分析表明,膨胀微晶石墨对Pb2+的吸附为自发进行的放热吸附过程,以物理吸附为主。

  • 加载中
  • 图 1  膨胀微晶石墨在低倍数下的SEM图(a),膨胀微晶石墨选区放大SEM图(b)

    Figure 1. 

    图 2  样品HJC-C-1.6P的氮气脱吸附曲线(a)与BJH孔径分布曲线(b)

    Figure 2. 

    图 3  氧化微晶石墨和膨胀微晶石墨的XRD图

    Figure 3. 

    图 4  氧化微晶石墨和膨胀微晶石墨的FTIR图

    Figure 4. 

    图 5  吸附条件对Pb2+吸附量的影响

    Figure 5. 

    图 6  膨胀微晶石墨吸附Pb2+的Langmuir(a)、Freundlich(b)等温线

    Figure 6. 

    图 7  膨胀微晶石墨吸附Pb2+的一级(a)、二级(b)动力学曲线

    Figure 7. 

    表 1  微晶石墨样品的化学成分分析

    Table 1.  Chemical composition of microcrystalline graphite sample

    成分 C Al2O3 CaO K2O TiO2 MnO SiO2 Fe2O3 MgO Na2O P2O5 LOI
    含量/% 81.54 3.95 0.41 0.38 0.21 0.01 7.85 1.06 0.14 0.14 0.05 4.56
      注:LOI为烧失量。
    下载: 导出CSV

    表 2  膨胀微晶石墨吸附Pb2+的等温模型参数

    Table 2.  Isothermal model parameters of Pb2+ adsorption on the expanded microcrystalline graphite

    T/K 样品编号 Langmuir Freundlich
    qm kl R2 kf 1/n R2
    298.15 HJC-C-1.6P 81.96 0.96 0.999 5 41.28 0.199 0.909 2
    下载: 导出CSV

    表 3  膨胀微晶石墨吸附Pb2+的动力学参数

    Table 3.  Kinetic parameters of Pb2+ adsorption on the expanded microcrystalline graphite

    样品编号 准一级动力学 准二级动力学
    qe k1 R2 qe k2 R2
    HJC-C-1.6P 78.36 6.698 0.999 1 80.19 7.58×10-4 0.995 5
    下载: 导出CSV

    表 4  膨胀微晶石墨吸附Pb2+的热力学参数

    Table 4.  Thermodynamic parameters of Pb2+ adsorption on the expanded microcrystalline graphite

    样品编号 ΔH°/
    (kJ·mol-1)
    ΔS°/
    (J·mol-1·K-1)
    ΔG°/(KJ·mol-1) R2
    293 298 303 308 313
    HJC-C-1.6P -12.48 -28.16 -4.16 -4.10 -4.02 -3.81 -3.60 0.961 3
    下载: 导出CSV
  • [1]

    Kadirvelu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource technology, 2001, 76(1):63-65. doi: 10.1016/S0960-8524(00)00072-9

    [2]

    Li Y H, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes[J]. Chemical physics letters, 2002, 357(3-4):263-266. doi: 10.1016/S0009-2614(02)00502-X

    [3]

    Madadrang C J, Kim H Y, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (Ⅱ) removal[J]. ACS applied materials & interfaces, 2012, 4(3):1186-1193. http://europepmc.org/abstract/MED/22304446

    [4]

    Rao M M, Ramana D K, Seshaiah K, et al. Removal of some metal ions by activated carbon prepared from phaseolus aureus hulls[J]. Journal of hazardous materials, 2009, 166(2-3):1006-1013. doi: 10.1016/j.jhazmat.2008.12.002

    [5]

    Solanki P, Gupta V, Kulshrestha R. Synthesis of zeolite from fly ash and removal of heavy metal ions from newly synthesized zeolite[J]. Journal of chemistry, 2010, 7(4):1200-1205. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_09f45f55557cd765e40808cdf858454f

    [6]

    Cai G B, Zhao G X, Wang X K, et al. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water[J]. The journal of physical chemistry C, 2010, 114(30):12948-12954. doi: 10.1021/jp103464p

    [7]

    Fu F, Zeng H, Cai Q, et al. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant[J]. Chemosphere, 2007, 69(11):1783-1789. doi: 10.1016/j.chemosphere.2007.05.063

    [8]

    Yang Z, Xia Y, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials[J]. Journal of the American chemical society, 2007, 129(6):1673-1679. doi: 10.1021/ja067149g

    [9]

    Chae H K, Siberio-perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527. doi: 10.1038/nature02311

    [10]

    Wang Y, Li L, Luo C, et al. Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+[J]. International journal of biological macromolecules, 2016, 86:505-511. doi: 10.1016/j.ijbiomac.2016.01.035

    [11]

    Yao S, Zhang J, Shen D, et al. Removal of Pb(Ⅱ) from water by the activated carbon modified by nitric acid under microwave heating[J]. Journal of colloid & interface science, 2016, 463:118-127. http://cn.bing.com/academic/profile?id=6396c9d271e5052a8ccc47eac1b4bd3a&encoded=0&v=paper_preview&mkt=zh-cn

    [12]

    Li B Q, Yuan W H, Li L. Adsorption of Pb2+ and Cd2+ on graphene nanosheets prepared using thermal exfoliation[J]. Acta physico-chimica sinica, 2016, 32(4):997-1004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201604035

    [13]

    赵颖华.膨胀石墨的制备及其对金属离子去除性能的研究[D].上海: 东华大学, 2012: 24-40.http://cdmd.cnki.com.cn/Article/CDMD-10255-1012311637.htm

    [14]

    段佳琪, 孙红娟, 彭同江.超声-混酸法提纯微晶石墨[J].非金属矿, 2017, 40(1):58-61. doi: 10.3969/j.issn.1000-8098.2017.01.018

    [15]

    McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of materials, 2007, 19(18):4396-4404. doi: 10.1021/cm0630800

    [16]

    Deng S, Ting Y P. Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ)[J]. Water research, 2005, 39(10):2167-2177. doi: 10.1016/j.watres.2005.03.033

    [17]

    Huang X, Pan M. The highly efficient adsorption of Pb(Ⅱ) on graphene oxides:a process combined by batch experiments and modeling techniques[J]. Journal of molecular liquids, 2016, 215:410-416. doi: 10.1016/j.molliq.2015.12.061

    [18]

    Li Y, Liu F, Xia B, et al. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites[J]. Journal of hazardous materials, 2010, 177(1):876-880. http://cn.bing.com/academic/profile?id=4c22b3161ab32f4fd07972a2f40a49cc&encoded=0&v=paper_preview&mkt=zh-cn

    [19]

    Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American chemical society, 1918, 40(9):1361-1403. doi: 10.1021/ja02242a004

    [20]

    Freundlich H M F. Over the adsorption in solution[J]. Journal of chemical physics, 1906, 57:385-470. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1cd3104bdb3bf53e388ca9b91c94d854

    [21]

    Yin Z, Xiong J, Chen M, et al. Recovery of uranium(Ⅵ) from aqueous solution by amidoxime functionalized wool fibers[J]. Journal of radioanalytical & nuclear chemistry, 2016, 307(2):1471-1479. https://www.researchgate.net/publication/314241469_Removal_of_hexavalent_chromium_ions_from_aqueous_solution_by_amidoxime_functionalized_wool_fibers

    [22]

    Ho Y S. Review of second-order models for adsorption systems[J]. Journal of hazardous materials, 2006, 136(3):681-689. doi: 10.1016/j.jhazmat.2005.12.043

    [23]

    Wang D, Liu L, Jiang X, et al. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin[J]. Applied surface science, 2015, 329(1):197-205. http://cn.bing.com/academic/profile?id=f1e82009ef941b959d1d0458b51a4156&encoded=0&v=paper_preview&mkt=zh-cn

    [24]

    Fernandes A N, Almeida C A P, Debacher N A, et al. Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat[J]. Journal of molecular structure, 2010, 982(1):62-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0217350182

  • 加载中

(7)

(4)

计量
  • 文章访问数:  1640
  • PDF下载数:  114
  • 施引文献:  0
出版历程
收稿日期:  2018-03-22
刊出日期:  2018-10-25

目录