不同粉碎机理的钢渣中RO相解离性能

侯新凯, 张锦, 武志江, 黄瑞涛, 王丹, 郭海涛. 不同粉碎机理的钢渣中RO相解离性能[J]. 矿产保护与利用, 2018, (5): 115-120, 125. doi: 10.13779/j.cnki.issn1001-0076.2018.05.015
引用本文: 侯新凯, 张锦, 武志江, 黄瑞涛, 王丹, 郭海涛. 不同粉碎机理的钢渣中RO相解离性能[J]. 矿产保护与利用, 2018, (5): 115-120, 125. doi: 10.13779/j.cnki.issn1001-0076.2018.05.015
HOU Xinkai, ZHANG Jin, WU Zhijiang, HUANG Ruitao, WANG Dan, GUO Haitao. Comparison of Different Breakage Mechanisms in Terms of RO Phase Liberation Properties in Steel Slag[J]. Conservation and Utilization of Mineral Resources, 2018, (5): 115-120, 125. doi: 10.13779/j.cnki.issn1001-0076.2018.05.015
Citation: HOU Xinkai, ZHANG Jin, WU Zhijiang, HUANG Ruitao, WANG Dan, GUO Haitao. Comparison of Different Breakage Mechanisms in Terms of RO Phase Liberation Properties in Steel Slag[J]. Conservation and Utilization of Mineral Resources, 2018, (5): 115-120, 125. doi: 10.13779/j.cnki.issn1001-0076.2018.05.015

不同粉碎机理的钢渣中RO相解离性能

  • 基金项目:
    陕西省自然科学基础研究计划项目(2016JM5010);山西省科技创新项目(2013101038)
详细信息
    作者简介: 候新凯(1966-), 男, 山西永济人, 博士, 教授, 硕士生导师, E-mail:houxinkai1@126.com
  • 中图分类号: X757

Comparison of Different Breakage Mechanisms in Terms of RO Phase Liberation Properties in Steel Slag

  • 为寻求钢渣中RO相解离的最佳粉碎机制,选取高压辊磨机(辊压机)、立式辊磨机(立磨)和球磨机制备的4种粒度分布钢渣粉,每种钢渣粉机械筛分为7个粒级并制成光片。人工统计RO相在5种解离类中分布率、相表面参数,以单体解离度和解离>75%的含量,2个指标表征解离性能;以相比界面面积和自由表面率,2个参数表征脱离解离量。4种钢渣粉中脱离解离量都高,RO相属于易解离矿物。粉碎设备脱离解离量高低次序为辊压机、立磨、球磨,同一设备粉磨细度越高,脱离解离量越大。RO相粒级解离度以嵌布粒度为界分为解离度平稳区和下降区,平稳区解离度稳定在高值且与设备无关;下降区挤压粉碎设备解离度高,粒级解离度随粒度增大降低幅度较大。

  • 加载中
  • 图 1  4种钢渣粉的粒度分布曲线

    Figure 1. 

    图 2  RO相的单偏光显微镜下形貌

    Figure 2. 

    图 3  RO相矿物解离度的粒级分布特征

    Figure 3. 

    图 4  RO相的相比界面面积

    Figure 4. 

    图 5  RO相的自由表面率

    Figure 5. 

    表 1  钢渣的化学成分    /%

    Table 1.  Chemical compositions of steel slag

    成分 CaO SiO2 Fe2O3 FeO Al2O3 MgO MnO LOI P2O5 Total f-CaO -
    含量 40.93 13.87 11.16 13.29 4.29 9.40 1.06 2.57 1.30 97.87 2.79 -
    下载: 导出CSV

    表 2  钢渣粉粒级百分数、统计颗粒数和RO相在解离类中分布率

    Table 2.  The distribution of steel slag size fraction and measured particle numbers and proportion of RO phase in liberation classes

    编号 粒级/μm 产率/% 统计数 RO相在解离类中分布率/%
    <1/4 1/4~2/4 2/4~3/4 3/4~4/4 4/4
    G -18 39.4 907 1.7 2.4 3.8 7.0 85.1
    L 50.6 1 223 1.7 1.5 1.7 9.3 85.8
    Q1 42.9 1 360 1.7 1.8 2.5 8.0 86.0
    Q2 57.6 1 458 0.8 1.1 1.8 9.9 86.4
    G 18~25 4.9 1 161 1.8 2.7 4.4 8.6 82.5
    L 6.1 926 2.1 1.5 2.9 9.9 83.7
    Q1 9.4 828 2.2 2.8 2.6 10.1 82.3
    Q2 5.0 1 325 1.3 1.4 2.4 11.4 83.4
    G 25~38 13.9 1 131 2.4 2.1 4.5 10.5 80.5
    L 11.8 1 248 2.4 1.9 3.9 12.1 79.6
    Q1 7.9 1 244 2.3 2.8 2.4 10.5 81.9
    Q2 12.9 1 468 1.8 2.2 2.3 11.6 82.1
    G 38~45 10.8 1 184 3.1 2.3 4.4 14.0 76.2
    L 9.5 1 315 4.0 4.5 4.3 8.8 78.4
    Q1 12.7 1 613 2.7 3.0 7.3 8.0 79.0
    Q2 11.2 1 433 2.0 2.8 3.5 11.2 80.5
    G 45~55 9.3 1 573 5.6 4.7 6.2 16.5 67.0
    L 6.1 1 534 5.0 5.9 8.7 15.4 65.1
    Q1 11.1 1 337 5.0 9.2 9.2 19.1 57.5
    Q2 7.0 1 546 7.7 6.2 7.2 16.0 62.9
    G 55~65 8.1 1 632 8.7 7.8 10.0 18.8 54.7
    L 7.2 1 320 8.2 6.8 13.5 21.3 50.2
    Q1 8.9 1 057 11.6 15.6 19.9 31.2 21.6
    Q2 5.1 1 389 14.5 10.6 9.9 19.2 45.7
    G +65 13.6 1 024 15.5 11.4 11.0 16.5 45.6
    L 8.6 1 011 12.8 12.9 13.0 18.8 42.5
    Q1 7.1 978 17.5 19.6 16.7 27.3 18.8
    Q2 1.2 1 138 16.0 13.3 11.4 20.6 38.7
    下载: 导出CSV

    表 3  RO相的相面积、界面长度和自由面长度

    Table 3.  Phase area, interfacial boundary and free surface boundary of RO phase

    编号 粒级/μm 面积/μm2 界面长/μm 自由面长/μm
    G -18 17 550 383 5 677
    L 7 927 262 4 566
    Q1 15 712 926 5 296
    Q2 22 259 967 6 395
    G 18~25 45 879 1 460 9 398
    L 16 866 587 5 318
    Q1 15 100 1 022 4 567
    Q2 74 493 3 630 20 632
    G 25~38 48 275 1 783 8 557
    L 42 144 1 761 10 211
    Q1 44 513 4 517 7 875
    Q2 26 390 2 242 6 775
    G 38~45 67 425 2 665 8 595
    L 108 402 5 107 10 657
    Q1 57 517 7 026 7 408
    Q2 31 963 3 033 5 910
    G 45~55 83 961 6 289 8 204
    L 89 324 7 205 8 152
    Q1 59 920 7 596 5 548
    Q2 114 459 11 764 11 024
    G 55~65 97 345 8 493 8 597
    L 83 369 8 208 7 098
    Q1 61798 7 999 5 161
    Q2 69 641 7 454 5 689
    G +65 130 978 12 370 10 506
    L 209 730 22 327 14 962
    Q1 88 898 11 659 3 696
    Q2 170 149 19 222 10 955
    下载: 导出CSV
  • [1]

    侯新凯, 梁爽, 刘柱燊, 等.钢渣生产高活性钢渣粉和惰性矿物产品的工艺: 201611105595.2[P].2017-05-31.

    [2]

    Tromans D. Mineral comminution:energy efficiency considerations[J]. Minerals engineering, 2008, 21(8):613-620. doi: 10.1016/j.mineng.2007.12.003

    [3]

    Lewis F M, Coburn J L, Bhappu R B. Comminution:a guide to size-reduction system design-1[J]. Mining engineering, 1976, 28(9):29-34. http://d.old.wanfangdata.com.cn/Periodical/zgftjs200903018

    [4]

    Schönert K. A first survey of grinding with high-compression roller mills[J]. International journal of mineral processing, 1988, 22(1):401-412. https://www.sciencedirect.com/science/article/abs/pii/0301751688900750

    [5]

    Han Y X, Liu L, Yuan Z T, et al. Comparison of low-grade hematite product characteristics in a high-pressure grinding roller and jaw crusher[J]. Minerals and metallurgical processing, 2012, 29(2):75-80. https://link.springer.com/article/10.1007%2FBF03402397

    [6]

    Celik I B, Oner M. The influence of grinding mechanism on the liberation characteristics of clinker minerals[J]. Cement and concrete research, 2006, 36(3):422-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028879439

    [7]

    Hoşten Ç, Özbay C. A comparison of particle bed breakage and rod mill grinding with regard to mineral liberation and particle shape effects[J]. Minerals engineering, 1998, 11(9):871-874. doi: 10.1016/S0892-6875(98)00074-0

    [8]

    Vizcarra T G, Wightman E M, Johnson N W, et al. The effect of breakage mechanism on the mineral liberation properties of sulphide ores[J]. Minerals engineering, 2010, 23(5):374-382. doi: 10.1016/j.mineng.2009.11.012

    [9]

    Stutzman P E. Microscopy of clinker and hydraulic cements[J]. Reviews in mineralogy and geochemistry, 2012, 74(1):101-146. doi: 10.2138/rmg.2012.74.3

    [10]

    Wang E, Shi F N, Manlapig E. Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels[J]. Minerals engineering, 2012, 27-28:28-36. doi: 10.1016/j.mineng.2011.12.005

    [11]

    袁致涛, 马玉新, 毛卫东, 等.马耳岭选矿厂尾矿中磁铁矿再回收试验研究[J].矿产保护与利用, 2014(2):44-48. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=83f15fe0-4961-4c31-8a3b-5775c85d30e4

    [12]

    侯新凯, 贺宁, 袁静舒, 等.钢渣中二价金属氧化物固溶体的选别性研究[J].硅酸盐学报, 2013, 41(8):1142-1150. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201308018

    [13]

    Leißner T, Hoang D H, Rudolph M, et al. A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling[J]. International journal of mineral processing, 2016, 156:3-13. doi: 10.1016/j.minpro.2016.08.014

    [14]

    Meloy T P. Liberation theory -eight, modern, usable theorems[J]. International journal of mineral processing, 1984, 13(4):313-324. doi: 10.1016/0301-7516(84)90051-6

    [15]

    Barbery G. Mineral liberation:measurement, simulation and practical use in mineral processing[M]. Quebec:editions GB, 1991.

    [16]

    Singh V, Venugopal R, Banerjee P K, et al. Effect of morphology on breakage and liberation characteristics of minerals and coal[J]. Minerals and metallurgical processing, 2014, 31(4):186-192. https://link.springer.com/article/10.1007%2FBF03402469

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1754
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2018-04-11
刊出日期:  2018-10-25

目录