-
摘要:
采用等温溶解平衡法研究了三元体系Rb+,Mg2+//SO42--H2O 298 K下的稳定相平衡,测定了该体系平衡液相组成和密度,确定了平衡固相组成及存在形式。根据试验数据绘制了该三元体系的稳定相图和密度-组成图。结果表明:该三元体系在298 K时有复盐Rb2SO4·MgSO4·6H2O生成,为复杂三元体系。其稳定相图包含有2个三元共饱点、3条单变量曲线和3个结晶区。2个共饱点均为相称共饱点;3个结晶区分别为单盐MgSO4·7H2O、Rb2SO4和复盐Rb2SO4·MgSO4·6H2O的结晶区。此外,采用经验方程式计算了该三元体系的密度,计算值与试验值显示了良好的吻合度,相对误差小于1%。
Abstract:Isothermal dissolution method was employed to study the ternary system Rb+, Mg2+//SO42--H2O at 298 K, the composition and density of the equilibrium liquid phase as well as the composition and existing form of the equilibrium solid phases were determined. According to the experimental data, the stable phase diagram and the density versus composition diagram in the ternary system were plotted. The results show that the ternary system Rb+, Mg2+//SO42--H2O at 298 K is a complex one in which the double salt Rb2SO4·MgSO4·6H2O is formed. The stable phase diagram contains two invariant points (commensurate type saturation points), three univariant curves, and three crystallization fields corresponding to single salt MgSO4·7H2O, Rb2SO4 and commensurate double salt Rb2SO4·MgSO4·6H2O. Moreover, the density of the solution in the ternary system was calculated using the classical equation, and the calculated value shows good agreement with the experimental value with the relative error less than 1%.
-
-
表 1 三元体系Rb+, Mg2+//SO42- - H2O 298 K稳定相平衡数据
Table 1. Stable phase equilibrium data of the ternary system Rb+, Mg2+//SO42- - H2O at 298 K
序号 密度(g·cm-3) 平衡液相组成/% 湿固相组成/% 平衡固相 w(Rb2SO4) w(MgSO4) w(Rb2SO4) w(MgSO4) 1, B 1.293 0 0.00 27.43 - - Eps 2 1.303 4 1.70 27.30 0.32 42.25 Eps 3 1.308 0 2.67 26.92 0.65 40.83 Eps 4 1.318 6 3.70 26.76 1.05 41.01 Eps 5, E1 1.326 1 4.31 26.75 10.60 37.23 Eps +RM 6 1.318 8 5.18 24.97 46.98 25.25 RM 7 1.292 1 5.41 22.23 47.25 24.74 RM 8 1.247 7 6.09 18.51 51.44 23.82 RM 9 1.193 6 8.50 11.43 49.91 23.68 RM 10 1.168 6 11.47 6.05 51.86 23.59 RM 11 1.187 1 16.70 2.44 51.12 22.44 RM 12 1.243 2 22.78 1.18 52.44 23.19 RM 13 1.290 7 26.18 1.63 53.26 23.22 RM 14, E2 1.352 4 31.69 0.63 67.80 16.22 Rb2SO4+RM 15 1.360 4 32.55 0.58 77.97 0.19 Rb2SO4 16, A 1.363 1 33.65 0.00 - - Rb2SO4 注:Eps为MgSO4·7H2O;RM为Rb2SO4·MgSO4·6H2O。 表 2 三元体系Rb+, Mg2+//SO42- - H2O 298 K密度的计算值和试验值的比较
Table 2. Comparison of the calculated and experimental values of density in the ternary system Rb+, Mg2+//SO42- - H2O at 298 K
序号 ρ/(g·cm-3) 相对误差 试验值 计算值 1, B 1.293 0 1.293 0 0.000 0 2 1.303 4 1.312 0 0.006 5 3 1.308 0 1.319 1 0.008 4 4 1.318 6 1.329 8 0.008 4 5, E1 1.326 1 1.337 2 0.008 3 6 1.318 8 1.325 5 0.005 1 7 1.292 1 1.294 3 0.001 7 8 1.247 7 1.257 4 0.007 7 9 1.193 6 1.202 4 0.007 4 10 1.168 6 1.174 7 0.005 2 11 1.187 1 1.191 7 0.003 9 12 1.243 2 1.246 0 0.002 2 13 1.290 7 1.291 5 0.000 6 14, E2 1.352 4 1.346 5 -0.004 4 15 1.360 4 1.356 7 -0.002 7 16, A 1.363 1 1.363 1 0.000 0 注:相对误差=(计算值-试验值)/计算值。 -
[1] Slobodin B V, Ishchenko A V, Samigullina R F, et al. Preparation and luminescent properties of rubidium and cesium vanadates[J]. Inorganic materials, 2014, 50(2):179-183. doi: 10.1134/S0020168514020150
[2] 郭宁, 赵武壮, 任卫峰, 等.铷铯行业开辟新纪元[J].中国有色金属, 2013(15):44-45. http://www.cnki.com.cn/Article/CJFDTotal-YSGY201315013.htm
[3] 刘昊, 刘亮明.铷和铯的应用前景及其制约因素[J].南方国土资源, 2015(11):31-33. doi: 10.3969/j.issn.1672-321X.2015.11.011
[4] 闫明, 钟辉, 张艳.卤水中分离提取铷、铯的研究进展[J].盐湖研究, 2006, 14(3):67-72. doi: 10.3969/j.issn.1008-858X.2006.03.013
[5] 陈尚清, 石健, 史振, 等.溶剂萃取法从卤水中提取铷、铯研究进展[J].盐业与化工, 2017, 46(6):45-49. http://d.old.wanfangdata.com.cn/Periodical/hhyyhg201706012
[6] 冯光熙.无机化学丛书:第一卷, 稀有气体、氢、碱金属[M].北京:科学出版社, 2011.
[7] 牛自得, 程芳琴.水盐体系相图及其应用[M].天津:天津大学出版社, 2002.
[8] 陈杰, 曾英, 程兴龙, 等.四元含锂铷氯化物水盐体系298.2 K介稳相平衡研究[J].四川大学学报(自然科学版), 2018(3):579-584. http://d.old.wanfangdata.com.cn/Periodical/scdxxb201803027
[9] 刘舟, 曾英, 于旭东.三元体系Rb+//Cl-, Borate-H2O 348 K稳定相平衡研究[J].稀有金属, 2013, 37(1):104-107. http://d.wanfangdata.com.cn/Periodical/xyjs201301019
[10] Zeng Y, Xie G, Wang C, et al. Stable phase equilibrium in the aqueous quaternary system Rb+, Mg2+//Cl-, borate-H2O at 323 K[J]. Journal of chemical & engineering data, 2016, 61(7):2419-2425. http://pubs.acs.org/doi/abs/10.1021/acs.jced.6b00024
[11] Yin Q, Mu P, Tan Q, et al. Phase equilibria for the aqueous reciprocal quaternary system Rb+, Mg2+//Cl-, borate-H2O at 348 K[J]. Journal of chemical & engineering data, 2014, 59(7):2235-2241. http://pubs.acs.org/doi/pdf/10.1021/je5001928
[12] Li H, Liu L, Yu X, et al. The phase diagram and physicochemical properties of the quaternary system Li+, Rb+, Mg2+//borate-H2O at 348 K[J]. Russian journal of physical chemistry A, 2015, 89(9):1572-1577. doi: 10.1134/S0036024415090149
[13] Yan F, Yu X, Yin Q, et al. The solubilities and physicochemical properties of the aqueous quaternary system Li+, K+, Rb+//borate-H2O at 348 K[J]. Journal of chemical & engineering data, 2013, 59(59):110-115. http://pubs.acs.org/doi/abs/10.1021/je400898p
[14] Duan X, Zeng Y, Luo J, et al. Stable phase equilibrium of aqueous quaternary system Li+, Rb+, Mg2+//borate-H2O at 298.2 K[J]. Journal of chemical engineering of Japan, 2017, 50(7):470-475.
[15] Yu X, Zeng Y, Guo S, et al. Stable phase equilibrium and phase diagram of the quinary system Li+, K+, Rb+, Mg2+//borate-H2O at T=348.15 K[J]. Journal of chemical & engineering data, 2016, 61(3):1246-1253. http://pubs.acs.org/doi/abs/10.1021/acs.jced.5b00888
[16] F. Wang and B. Hu.Solubility prediction of RbCl-Rb2SO4-H2O system at 25℃ using pitzer ion-interaction model[J]. Russ. j. inorg. chem., 2010, 55(3): 441-443.
[17] Kalinkin A M, Vasin S K, Antropova O V. Solubility diagram of (lithium sulfate + sodium sulfate + rubidium sulfate)(aq) at the temperature 298.15 K[J]. J. chem. thermodyn., 1994, 26(1):91-100. doi: 10.1006/jcht.1994.1024
[18] Wang F Y. Thermodynamic simulation on Rb2SO4-CS2SO4-MgSO4-H2O system at 25℃[J]. Asian j. chem., 2013, 25(13):7631-7632. doi: 10.14233/ajchem
[19] 宋彭生.湿渣法在水盐体系相平衡研究中的应用[J].盐湖研究, 1991(1):15-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005569805
[20] 中国科学院青海盐湖研究所分析室.卤水和盐的分析方法[M].北京:科学出版社, 1988.
[21] 房春晖.一个预测盐湖卤水密度的新的理论模型:盐湖化学基础理论研究之一[J].盐湖研究, 1990(2):15-20. http://www.cqvip.com/qk/93634X/199002/394366.html
-