Adsorption Properties and Mechanism of Modified Magnetite for Cadmium Removal from Mined Soil
-
摘要:
采用酸浸、灼烧的方法对磁铁矿进行改性,通过扫描电镜(SEM)、X射线衍射(XRD)对改性前后的磁铁矿进行表征,并研究其对矿区土壤中水溶性Cd2+的吸附性能及机理。吸附条件试验表明:对于20 g矿区土壤样品,当改性磁铁矿用量0.5 g、pH为7、吸附时间70 min时,以5 mL 0.5%盐酸-0.5%硫脲为洗脱剂,改性磁铁矿对水溶性镉的去除率达到95%以上。Cd2+的吸附等温线符合Langmuir和Freundlich等温线吸附模型,饱和吸附容量达到18.93 mg/g。吸附过程不受离子强度影响,吸附机理主要为离子交换和氧化还原反应。改性磁铁矿制备简便且易分离,是一种值得进一步研究并实际应用的环保处理材料。
Abstract:Magnetite was modified with the methods of acid leaching and calcination.The surface structure of magnetite before and after modification were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD).Adsorption property and mechanism of modified magnetite on water soluble Cd2+ were investigated. The results show that:for 20 g soil samples, when the magnetite dosage is 0.5 g, pH value is 7, adsorption time is 70 min, and 5 mL 0.5% HCl -0.5% thiourea are as eluent, the maximum removal rate of water soluble cadmium can up to 95%. The Cd2+ adsorption is well fitted by Langmuir and Freundlich models and the maximum absorption capacity is 18.93 mg/g. Furthermore, the adsorption is not suppressed by the presence of background electrolyte that exists mainly ion-exchange and oxidation-reduction process. The preparation of modified magnetite is simple and easy to separate, which deserves further study and pracitical application for environmental treatment.
-
Key words:
- magnetite /
- mined soil /
- cadmium /
- adsorption /
- mechanism
-
-
表 1 正交试验结果
Table 1. The results of the orthogonal test
No. 盐酸/% 硫脲/% 体积/mL 镉回收率/% 1 1(0.25) 1(0.25) 1(5) 82.75 2 1(0.25) 2(0.5) 2(10) 94.03 3 1(0.25) 3(0.75) 3(15) 95.38 4 2(0.75) 1(0.25) 2(10) 93.61 5 2(0.75) 2(0.5) 3(15) 95.50 6 2(0.75) 3(0.75) 1(5) 86.74 7 3(0.5) 1(0.25) 3(15) 92.58 8 3(0.5) 2(0.5) 1(5) 96.83 9 3(0.5) 3(0.75) 2(10) 96.86 表 2 磁铁矿吸附等温线拟合参数
Table 2. Parameters of the fitting of adsorption isotherms on magnetite
Langmuir Freundlich qmax/(mg·g-1) K R2 Kf n R2 磁铁矿 12.05 0.021 0.991 0.33 2.106 0.992 改性磁铁矿 18.93 0.032 0.993 0.25 2.251 0.994 注:K和Kf分别为Langmuir和Freundlich吸附等温方程的吸附常数;n为与反应键能有关的经验常数;qmax为饱和吸附容量。 表 3 不同矿物材料对镉的吸附容量比较
Table 3. Comparison of the adsorption capacity of cadmium with various mineral
-
[1] 黄占斌, 孙朋成.矿区重金属污染土壤的修复[J].科学, 2013, 65(6):38-42. http://d.old.wanfangdata.com.cn/Periodical/hjbhkx200901021
[2] 李婧, 周艳文, 陈森, 等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报, 2015, 21(24):104-107. doi: 10.3969/j.issn.1007-7731.2015.24.044
[3] Chojnacka K., Chojnacki A., Gorecka H., et al.Bioavailability of heavy metals from polluted soils to plants[J]. Science of the total environment, 2006, 337(1):175-182. http://www.sciencedirect.com/science/article/pii/S0048969704004747
[4] 聂果, 王永杰, 李军.环境矿物材料吸附重金属的有机改性研究[J].环境科技, 2015, 28(2):76-80. doi: 10.3969/j.issn.1674-4829.2015.02.018
[5] 徐婉珍, 吴向阳, 李春香, 等.凹凸棒土对镉(Ⅱ)和镍(Ⅱ)吸附行为的研究及分析应用[J].冶金分析, 2010, 30(7):52-57. doi: 10.3969/j.issn.1000-7571.2010.07.012
[6] 朱小燕, 姜丽娜, 尚建疆, 等.重金属离子在改性蛭石表面的竞争吸附及其动力学研究[J].矿产保护与利用, 2018(2):111-117. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a9a9a8f9-93b7-4a9e-9e3e-eabe348d5186
[7] 魏凤, 徐怀洲, 向春晓, 等.不同前处理方式下钠基蒙脱石对重金属镉的吸附研究[J].农业环境科学学报, 2018, 37(3):456-463. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201803007
[8] 赵兴杰, 侯鹏程, 韩旭平, 等.膨润土和沸石对污染土壤有效镉的动态影响[J].山西农业科学, 2014, 42(9):981-983. doi: 10.3969/j.issn.1002-2481.2014.09.14
[9] 王莫茜.高岭土去除镉离子与对硝基苯酚二元污染物的研究[J].资源节约与环保, 2015(8):73-76. doi: 10.3969/j.issn.1673-2251.2015.08.065
[10] 赵谨.天然磁铁矿与褐铁矿处理含Hg(Ⅱ)、Cd(Ⅱ)、Cr(Ⅱ)废水实验研究[D].北京: 中国地质大学(北京), 2002.
[11] 吴昆明, 郭华明, 魏朝俊.天然磁铁矿化学改性及其在水体除砷中的应用[J].岩矿测试, 2017, 36(1):32-39. http://d.old.wanfangdata.com.cn/Periodical/ykcs201701004
[12] Alexandre T. Paulino, Laurence A. Belfiore, Lauro T. Kubota, et al. Effect of magnetite on the adsorption behavior of Pb(Ⅱ), Cd(Ⅱ), and Cu(Ⅱ) in chitosan-based hydrogels[J]. Desalination, 2011, 275(1-3):187-196. doi: 10.1016/j.desal.2011.02.056
[13] 姜彬慧, 丽丽, 赵研, 等.pH值对天然磁铁矿吸附水中Pb2+的影响及吸附机制研究[J].功能材料, 2013, 44(23):3392-3396. doi: 10.3969/j.issn.1001-9731.2013.23.007
[14] 谭服鼎, 何宏平, 梁晓亮, 等.类质同像置换对磁铁矿吸附Pb(Ⅱ)性能的影响[J].矿物学报, 2018, 38(1):64-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y3253399
[15] Zeng G M, Liu Y Y, Tang L, et al. Enhancement of Cd(Ⅱ) adsorption by polyacrylic acid modified magnetic mesoporous carbon[J]. Chemical engineering journal, 2015, 259:153-160. doi: 10.1016/j.cej.2014.07.115
[16] Hu X J, Liu Y G, Zeng G M, et al. Effects of background electrolytes and ionic strength on enrichment of Cd(Ⅱ) ions with magnetic graphene oxide-supported sulfanilic acid[J]. Journal of colloid and interface science, 2014, 435:138-144. doi: 10.1016/j.jcis.2014.08.054
[17] Kamimura T, Nasu S, Segi T, et al. Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion[J]. Corrosion science, 2003, 45(8):1863-1879. doi: 10.1016/S0010-938X(03)00023-4
-