-
摘要:
赤泥中富含铝、铁、钛等多种有价金属,以及钪、钇、铈、镧等稀土元素,是一种极具回收价值的二次资源。目前,国内外钛被广泛应用于各个领域,钪由于稀缺导致价格昂贵。赤泥作为碱性固体废弃物,具有较高的钪钛含量,可以加以回收利用,缓解资源匮乏的同时又能改善环境。本文综述了目前国内外赤泥中钪和钛的回收研究现状,并指出了各工艺存在的问题,同时对赤泥中钪和钛的选择性回收提出了展望。
Abstract:As a secondary resource with high recycling value, red mud is rich in various valuable metals such as aluminum, iron and titanium, as well as many rare earth elements like scandium, yttrium, cerium and lanthanum. At present, the titanium is widely used in various fields at home and abroad, as well as the scandium is expensive due to its scarcity. As an alkaline solid waste, red mud is an important raw material containing scandium and titanium, which should be used to alleviate the lack of resources and improve the environment. In this paper, the current research status of the recovery of scandium and titanium in red mud at home and abroad was reviewed, and the problems of each process were pointed out. Meanwhile, the prospect of selective recovery of scandium and titanium in red mud was proposed.
-
Key words:
- red mud /
- scandium /
- titanium /
- recovery /
- secondary resources
-
-
表 1 从赤泥中回收钪和钛的工艺总结
Table 1. The process summary of scandium and titanium recovery from red mud
Valuable element Method Recovery rate Lack of technology Reference Sc Hydrometallurgy 99% Other elementsare extracted at the same time, such as titanium [15] 98% Complex process and high cost of solvent [16] Combined method >80% Recovery rate is low [33] >90% High energy consumption and low comprehensive utilization [34] Ti Acid leaching - High energy consumption and waste gas pollution [25] 64.5% The metal ion selectivity is poor by acid leaching [26] 73% Long process and low recovery [31] 54.3% Recovery rate is low [27] >80% High acid concentration and harsh treatment environment [28] -
[1] ZhouK G, Teng C Y, Zhang X K, et al. Enhanced selective leaching of scandium from red mud[J]. Hydrometallurgy, 2018, 182:57-63. doi: 10.1016/j.hydromet.2018.10.011
[2] Li G H, Ye Q, Deng B N, et al. Extraction of scandium from scandium-richmaterial derived from bauxite ore residues[J]. Hydrometallurgy, 2018, 176:62-68. doi: 10.1016/j.hydromet.2018.01.007
[3] 练佳佳, 唐庆杰, 吴文荣, 等.赤泥在环境修复领域的应用综述[J].硅酸盐通报, 2015(11):3236-3242. http://d.old.wanfangdata.com.cn/Periodical/gsytb201511030
[4] Zhang X K, Zhou K G, Chen W, et al. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach[J]. Journal of central couth university, 2019, 26(2):458-466. doi: 10.1007/s11771-019-4018-6
[5] 滕春英, 周康根, 宁凌峰, 等.盐酸分级浸出赤泥中有价金属元素[J].环境工程学报, 2018, 12(1):310-315. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201801040
[6] 林亮.赤泥建设材料衍生产品的安全性分析[J].中国安全生产科学技术, 2014, 10(1):165-169. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201401036
[7] 杨艳娟, 李建伟, 张茂亮, 等.改性赤泥免烧砖的制备与放射性屏蔽机理分析[J].矿产保护与利用, 2019, 39(1):95-99. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=bb1a8e22-bfe3-4bf9-a0b8-adb983687ed2
[8] 刘中凯, 刘万超, 王洋洋, 等.赤泥土壤修复扩大实验及微生物修复技术[C]//2018中国环境科学学会科学技术年会论文集(第三卷).合肥, 2018.
[9] 刘奋照, 王中慧, 薛玟, 等.赤泥利用及提炼钪综述[J].广东化工, 2015, 42(5):56-58. doi: 10.3969/j.issn.1007-1865.2015.05.030
[10] 司秀芬, 邓佐国, 徐廷华.赤泥提钪综述[J].江西有色金属, 2003, 17(2):28-31. doi: 10.3969/j.issn.1674-9669.2003.02.010
[11] 徐璐, 罗宇智, 史光大.从赤泥硫酸熟化浸出液中预富集钪[J].有色金属(冶炼部分), 2018(11):39-41. doi: 10.3969/j.issn.1007-7545.2018.11.009
[12] 杨绪平, 邵志超, 张晨.赤泥的资源化综合利用[J].现代冶金, 2018, 46(1):42-44. doi: 10.3969/j.issn.1005-6068.2018.01.013
[13] 杨涛, 王志坚, 肖劲, 等.赤泥和钛白废液中提钪的浸出工艺研究[J].矿冶, 2015, 24(5):37-40. doi: 10.3969/j.issn.1005-7854.2015.05.010
[14] Bonomi C, Alexandri A, Vind J, et al. Scandium and titanium recovery from bauxite residue by direct leaching with a bronsted acidic ionic liquid[J]. Metals, 2018, 8(10):834. doi: 10.3390/met8100834
[15] Wang W W, Pranolo Y, Cheng C Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation and purification technology, 2013, 108:96-102. doi: 10.1016/j.seppur.2013.02.001
[16] Onghena B, Borra C R, Van G T, et al. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide[J]. Separation and purification technology, 2017, 176:208-219. doi: 10.1016/j.seppur.2016.12.009
[17] 罗宇智, 徐璐, 史光大.硫酸熟化浸出赤泥中钪的研究[J].有色金属(冶炼部分), 2017(4):45-47. doi: 10.3969/j.issn.1007-7545.2017.04.011
[18] Nghiem V N, Lizuka A, Shibata E, et al. Study of adsorption behavior of a new synthesized resin containing glycol amic acid group for separation of scandium from aqueous solutions[J]. Hydrometallurgy, 2016, 165:51-56. doi: 10.1016/j.hydromet.2015.11.016
[19] 赵恒, 李望, 朱晓波, 等.赤泥提钛研究现状与展望[J].河南化工, 2018, 35(6):3-12. http://d.old.wanfangdata.com.cn/Periodical/hnhg201806001
[20] 刘卫, 尹志芳, 李国高, 等.钛白废酸提钪工艺中除钛的研究[J].稀土, 2016, 37(6):86-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201606015
[21] 韩东战, 尹中林.赤泥提钛的研究现状[J].矿产综合利用, 2017(3):33-37. doi: 10.3969/j.issn.1000-6532.2017.03.005
[22] 朱晓波, 李望, 管学茂.赤泥循环酸浸提钛实验及动力学研究[J].稀有金属与硬质合金, 2015(3):9-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201503003
[23] 李冬, 潘利祥, 赵良庆, 等.赤泥综合利用的研究进展[J].环境工程, 2014(S1):616-618. http://d.old.wanfangdata.com.cn/Periodical/sxhg201510036
[24] 李亮星, 黄茜琳.从赤泥中提取钛的试验研究[J].湿法冶金, 2011, 30(4):323-325. doi: 10.3969/j.issn.1009-2617.2011.04.016
[25] Kasliwal P, Sai P S T. Enrichment of titanium dioxide in red mud:a kinetic study[J]. Hydrometallurgy, 1999, 53(1):73-87. doi: 10.1016/S0304-386X(99)00034-1
[26] Agatzini-Leonardou S, Oustadakis P, Tsakiridis P E, et al. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure[J]. Journal of hazardous materials, 2008, 157(2-3):579-586. doi: 10.1016/j.jhazmat.2008.01.054
[27] 王琪, 姜林.硫酸浸出赤泥中铁、铝、钛的工艺研究[J].矿冶工程, 2011, 31(4):90-94. doi: 10.3969/j.issn.0253-6099.2011.04.024
[28] 廖春发, 姜平国, 焦芸芬, 等.赤泥中钛硫酸浸出的工艺条件及动力学研究[J].矿业研究与开发, 2008(2):45-47. doi: 10.3969/j.issn.1005-2763.2008.02.015
[29] 徐璐, 史光大, 李元坤, 等.盐酸浸出拜耳法赤泥预富集钪的研究[J].有色金属(冶炼部分), 2015(1):54-56. doi: 10.3969/j.issn.1007-7545.2015.01.014
[30] Zhou G, Li Q, Sun P, et al. Removal of impurities from scandium chloride solution using 732-type resin[J]. Journal of rare earths, 2017, 36(3):311-316. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb-e201803014
[31] Piga L, Pochetti F, Stoppa L. Recovering metals from red mud generated during alumina production[J]. Journal of the minerals, metals and materials society, 1993, 45(11):54-59. doi: 10.1007/BF03222490
[32] 王璐, 郝彦忠, 郝增发.赤泥中有价金属提取与综合利用进展[J].中国有色金属学报, 2018, 28(8):213-226. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201808025
[33] Borra C R, Blanpain B, Pontikes Y, et al. Recovery of rare earths and major metals from bauxite residue (red mud) by alkali roasting, smelting, and leaching[J]. Journal of sustainable metallurgy, 2017, 3(2):393-404. doi: 10.1007/s40831-016-0103-3
[34] Palant A, Petrova V A. Scandium extraction from hydrochloric acid solutions poly(2-ethylhexyl) phosphonitrllic acid[J]. Russian journal of inorganic chemistry, 1997, 42(6):943-946.
[35] Shinde V M, Bhilare N G. Extraction and separation of Sc salicylate with tripheny/phosphine oxide[J]. Fresenius journal of analytical chemistry, 1997, 357(4):402-407.
[36] 肖金凯.工业废渣赤泥中钪的分布特征[J].地质地球化学, 1996(2):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600061719
-