电解锰渣无害化处理与资源化利用技术研究进展

张超, 王帅, 钟宏, 秦林. 电解锰渣无害化处理与资源化利用技术研究进展[J]. 矿产保护与利用, 2019, 39(3): 111-118. doi: 10.13779/j.cnki.issn1001-0076.2019.03.018
引用本文: 张超, 王帅, 钟宏, 秦林. 电解锰渣无害化处理与资源化利用技术研究进展[J]. 矿产保护与利用, 2019, 39(3): 111-118. doi: 10.13779/j.cnki.issn1001-0076.2019.03.018
ZHANG Chao, WANG Shuai, ZHONG Hong, QIN Lin. Review on Decontamination and Resource Utilization of Electrolytic Manganese Residue Technology[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 111-118. doi: 10.13779/j.cnki.issn1001-0076.2019.03.018
Citation: ZHANG Chao, WANG Shuai, ZHONG Hong, QIN Lin. Review on Decontamination and Resource Utilization of Electrolytic Manganese Residue Technology[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 111-118. doi: 10.13779/j.cnki.issn1001-0076.2019.03.018

电解锰渣无害化处理与资源化利用技术研究进展

  • 基金项目:
    国家科技支撑计划课题(2015BAB17B01);湖南省科技计划项目(2016TP1007)
详细信息
    作者简介: 张超(1987-), 男, 辽宁丹东人, 博士, 研究方向:锰资源选冶技术, E-mail:116078138@qq.com
    通讯作者: 钟宏(1961-), 男, 浙江龙泉人, 教授, 博士, 主要研究方向为资源化工, E-mail:zhongh@csu.edu.cn
  • 中图分类号: X753

Review on Decontamination and Resource Utilization of Electrolytic Manganese Residue Technology

More Information
  • 电解锰渣属第Ⅱ类一般工业固废。随着电解锰渣产量的增加和国家对环保要求的提高,电解锰渣的合理处置问题受到了越来越多的关注。根据电解锰渣的利用级别,可将电解锰渣的处理方式分为安全堆存、无害化处理和资源化利用三个层次。根据技术特征,可以将电解锰渣处理技术分为安全堆存技术、干法处理技术、火法处理技术及湿法处理技术四大类。本文按照电解锰渣的处理技术特征,对近年来的相关研究进展进行探讨,以期寻找到在技术、经济、市场容量或消纳能力及标准要求等方面同时可行的方案。

  • 加载中
  • 表 1  电解锰渣中硫酸盐分解反应方程式及所需温度

    Table 1.  Sulfate decomposition equation and temperature in the electrolytic manganese residue

    直接高温煅烧
    2(NH4)2SO4=
    4NH3(g)+2SO2(g) + 2H2O(g) + O2(g)
    T≥600 ℃
    4MnSO4=2Mn2O3+4SO2(g)+O2(g) T≥970 ℃
    3MnSO4=Mn3O4+3SO2(g)+O2(g) T≥980 ℃
    MnSO4=MnO2+SO2(g) T≥1 120 ℃
    2MgSO4=2MgO+2SO2(g)+O2(g) T≥1 040 ℃
    2CaSO4=2CaO+2SO2(g)+O2(g) T≥1 670 ℃
    加还原碳粉焙烧
    2(NH4)2SO4+C=
    4NH3(g)+2SO2(g)+2H2O(g)+CO2(g)
    T≥240 ℃
    4MnSO4+C=2Mn2O3+4SO2(g)+CO2(g) T≥420 ℃
    3MnSO4+C= Mn3O4+3SO2(g)+CO2(g) T≥530 ℃
    2MgSO4+C=2MgO+2SO2(g)+CO2(g) T≥310 ℃
    2CaSO4 +C=2CaO+2SO2(g)+CO2(g) T≥850 ℃
    下载: 导出CSV
  • [1]

    高武斌, 王志增, 赵伟洁, 等.电解锰渣复合Fe-Mn-Cu-Co系红外辐射材料的制备及性能研究[J].功能材料, 2015, 46(6):6076-6080. doi: 10.3969/j.issn.1001-9731.2015.06.016

    [2]

    王积伟, 周长波, 杜兵, 等.电解锰渣无害化处理技术[J].环境工程学报, 2014, 8(1):329-333. http://d.old.wanfangdata.com.cn/Thesis/Y2088190

    [3]

    赵虎腾, 李远霞, 谭德斌, 等.电解锰渣的理化特性与物相转变研究[J].广东化工, 2017, 44(7):64-66. doi: 10.3969/j.issn.1007-1865.2017.07.029

    [4]

    王勇.电解锰渣作水泥混合材的研究[J].新型建筑材料, 2016, 43(5):78-80. doi: 10.3969/j.issn.1001-702X.2016.05.019

    [5]

    Duan N, Dan Z G, Wang F, et al. Electrolytic manganese metal industry experience based China's new model for cleaner production promotion[J]. Journal of cleaner production, 2011, 19(17):2082-2087. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c080b49b7abff1a032cec3a3ae21168

    [6]

    蒙美福, 周立强.电解金属锰渣库建设环境安全性问题初探[J].中国锰业, 2010, 28(2):51-53. doi: 10.3969/j.issn.1002-4336.2010.02.014

    [7]

    Li C X, Zhong H, Wang S, et al. Leaching behavior and risk assessment of heavy metals in a landfill of electrolytic manganese residue in western Hunan, China[J]. Human & ecological risk assessment an international journal, 2014, 20(5):1249-1263. http://cn.bing.com/academic/profile?id=0d57404886ff2e32cfb62f44d427f17d&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    刘宁, 甘宇宁, 陈兵.防渗电解锰渣库流固耦合稳定性分析[J].矿冶工程, 2014, 34(2):20-24. doi: 10.3969/j.issn.0253-6099.2014.02.005

    [9]

    舒建成.电解锰渣中锰和氨氮的强化转化方法研究[D].重庆: 重庆大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10611-1017838797.htm

    [10]

    方选进, 王智, 钱觉时, 等.电解锰渣的水泥固化与浸出毒性研究[J].安全与环境学报, 2010, 10(5):46-49. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201005012

    [11]

    Shu J C, Wu H P, Liu R L, et al. Simultaneous stabilization/solidification of Mn2+and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource[J]. Ecotoxicology & environmental safety, 2018, 148(4):220-227.

    [12]

    Shu J C, Liu R L, Liu Z H, et al. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of hazardous materials, 2016, 317:267-274. doi: 10.1016/j.jhazmat.2016.05.076

    [13]

    Du B, Hou D Y, Duan N, et al. Immobilization of high concentrations of soluble Mn(Ⅱ) from electrolytic manganese solid waste using inorganic chemicals[J]. Environmental science & pollution research international, 2015, 22(10):7782-7793. http://cn.bing.com/academic/profile?id=98195147f50ce9e44ae2694267b8fb5a&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    Du B, Zhou C B, Dan Z G, et al. Aging of solidified/stabilized electrolytic manganese solid waste with accelerated carbonation and aging inhibition[J]. Environ sci pollut res int, 2016, 23(23):24195-24204. doi: 10.1007/s11356-016-7635-8

    [15]

    蒋艳宇, 戴慧敏, 陈朝猛, 等.电解锰渣固化/稳定化处理及其浸出毒性分析[J].安徽农学通报, 2018, 24(22):131-134. doi: 10.3969/j.issn.1007-7731.2018.22.051

    [16]

    李坦平, 何晓梅, 谢华林, 等.电解锰渣-生石灰-低等级粉煤灰复合掺合料的试验研究[J].新型建筑材料, 2007, 34(1):66-69. doi: 10.3969/j.issn.1001-702X.2007.01.022

    [17]

    陈平, 张路辉, 刘荣进, 等.废石粉-锰渣微粉制备自流平砂浆的试验研究[J].混凝土, 2016, 325(11):116-118. doi: 10.3969/j.issn.1002-3550.2016.11.031

    [18]

    Zhou C B, D B, Wang N F, et al. Preparation and strength property of autoclaved bricks fromelectrolytic manganese residue[J]. Journal of cleaner production, 2014, 84(1):707-714.

    [19]

    Du B, Zhou C B, Dan Z G, et al. Preparation and characteristics of steam-autoclaved bricks produced from electrolytic manganese solid waste[J]. Construction & building materials, 2014, 50(1):291-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fb66758b21306b2f42a1a503a73890e

    [20]

    Qin J T, Wang J W, Wang H F, et al. Effect of aggregate addition on the properties of unburned brick of electrolytic manganese slag[J]. Iop conference series:earth & environmental science. DOI:10.1088/1755-1315/94/1/012173.

    [21]

    徐放, 王星敏, 谢金连, 等.锰尾矿中锰对小麦生长的营养效应[J].贵州农业科学, 2010, 38(8):56-58. doi: 10.3969/j.issn.1001-3601.2010.08.020

    [22]

    Li J, Du D Y, Peng Q J, et al. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting[J]. Journal of cleaner production, 2018, 192:347-353. doi: 10.1016/j.jclepro.2018.04.184

    [23]

    刘唐猛.电解锰渣复混肥的制备工艺研究[D].长沙: 中南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10533-1012478766.htm

    [24]

    Wu F F, Li X P, Zhong H, et al. Utilization of electrolytic manganese residues in production of porous ceramics[J]. International journal of applied ceramic technology, 2016, 13(3):511-521. doi: 10.1111/ijac.12502

    [25]

    Wu F F, Wang S, Guo S Y, et al. Adsorption of methylene blue by porous ceramics prepared from electrolytic manganese residues[J]. Desalination & water treatment, 2016, 57(57):1-11.

    [26]

    谢子楠, 吴思展, 杨晓红, 等.锰渣制多孔材料的制备及其对含汞废水的初步处理[J].广州化工, 2018, 46(10):72-74. doi: 10.3969/j.issn.1001-9677.2018.10.024

    [27]

    吴建锋, 宋谋胜, 徐晓虹, 等.利用锰渣制备钙长石/顽辉石复相陶瓷[J].武汉理工大学学报, 2014, 36(7):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201407002

    [28]

    冉岚, 刘少友, 文正康.电解锰渣-废玻璃低温烧结制备陶瓷砖的研究[J].无机盐工业, 2014, 46(7):56-58. doi: 10.3969/j.issn.1006-4990.2014.07.016

    [29]

    冉岚, 刘少友, 文正康.利用电解锰渣制备多孔陶瓷材料[J].非金属矿, 2014(4):30-31. doi: 10.3969/j.issn.1000-8098.2014.04.010

    [30]

    王功勋, 李志, 祝明桥.电解锰废渣-废陶瓷磨细粉制备再生陶瓷砖[J].硅酸盐通报, 2013, 32(8):1496-1501. http://d.old.wanfangdata.com.cn/Periodical/gsytb201308007

    [31]

    叶芬, 成昊, 徐丽, 等.利用电解锰渣制备轻质多孔陶瓷块状材料的研究[J].无机盐工业, 2018, 50(10):66-69. http://d.old.wanfangdata.com.cn/Periodical/wjygy201810016

    [32]

    张杰, 练强, 王建蕊, 等.利用锰渣制备陶瓷墙地砖试验研究[J].中国陶瓷工业, 2009, 16(3):16-19. doi: 10.3969/j.issn.1006-2874.2009.03.005

    [33]

    王勇.电解锰渣作为水泥矿化剂的研究[J].混凝土, 2010(8):90-93. doi: 10.3969/j.issn.1002-3550.2010.08.031

    [34]

    Hou P K, Qian J S, Wang Z, et al. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue[J]. Cement & concrete composites, 2012, 34(2):248-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e1f79ec6abb1d58aa661aec7984a1c2

    [35]

    Wang J, Peng B, Chai L Y, et al. Preparation of electrolytic manganese residue-ground granulated blastfurnace slag cement[J]. Powder technology, 2013, 241:12-18. doi: 10.1016/j.powtec.2013.03.003

    [36]

    Li Q Z, Liu Q, Peng B, et al. Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue[J]. Construction & building materials, 2016, 106:236-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=952f314e921728a08e418e19cfe6d228

    [37]

    Yang C, Lv X X, Tian X K, et al. An investigation on the use of electrolytic manganese residue as filler in sulfur concrete[J]. Construction & building materials, 2014, 73(73):305-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deacc1794064e2ed7c866b432e83dad9

    [38]

    赵世珍, 韩凤兰, 王亚光.电解锰渣-镁渣制备复合矿渣硫铝酸盐水泥熟料的研究[J].硅酸盐通报, 2017, 36(5):1766-1772. http://d.old.wanfangdata.com.cn/Periodical/gsytb201705054

    [39]

    张金龙, 彭兵, 柴立元, 等.电解锰渣-页岩-粉煤灰烧结砖的研制[J].环境科学与技术, 2011, 34(1):144-147. http://d.old.wanfangdata.com.cn/Periodical/hjkxyjs201101034

    [40]

    李昌新, 钟宏, 王帅, 等.电解金属锰渣中重金属的固化新技术[J].中国锰业, 2014(4):23-26. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201404009

    [41]

    Du B, Zhou C B, Li X H, et al. A kinetic study of Mn(Ⅱ) precipitation of leached aqueous solution from electrolytic manganese residues[J]. Toxicological & environmental chemistry reviews, 2015, 97(3-4):349-357.

    [42]

    Peng T F, Xu L J, Wang X M. Leaching of manganese residue for the preparation of trimanganese tetroxide with a high surface area[J]. Chinese journal of geochemistry, 2013, 32(3):331-336. doi: 10.1007/s11631-013-0640-4

    [43]

    Peng T F, Xu L J, Chen H C. Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue[J]. Central european journal of chemistry, 2010, 8(5):1059-1068. http://d.old.wanfangdata.com.cn/NSTLQK/10.2478-s11532-010-0081-4/

    [44]

    Yang W Q, An J, Yuan X L, et al. Manganese removal from electrolytic manganese residue using ozone[J]. Advanced materials research, 2014, 997:754-757. doi: 10.4028/www.scientific.net/AMR.997.754

    [45]

    Wang N F, Fang Z J, Sui P, et al. Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2[J]. Hydrometallurgy, 2016, 164:288-294. doi: 10.1016/j.hydromet.2016.06.019

    [46]

    Chen H L, Liu R L, Liu Z H, et al. Immobilization of Mn and NH4+-N from electrolytic manganese residue waste[J]. Environmental science & pollution research, 2016, 23(12):12352-12361.

    [47]

    Chen H L, Liu R L, Shu J C, et al. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist[J]. Environmental letters, 2015, 50(12):1282-1290.

    [48]

    Xin B P, Chen B, Duan N, et al. Extraction of manganese from electrolytic manganese residue by bioleaching[J]. Bioresource technology, 2011, 102(2):1683-1687. doi: 10.1016/j.biortech.2010.09.107

    [49]

    Lan J R, Sun Y, Guo L, et al. A novel method to recover ammonia, manganese and sulfate from electrolytic manganese residues by bio-leaching[J]. Journal of cleaner production, 2019, 223:499-507. doi: 10.1016/j.jclepro.2019.03.098

    [50]

    Shu J C, Liu R L, Liu Z H, et al. Leaching of manganese from electrolytic manganese residue by electro-reduction[J]. Journal of electroanalytical chemistry, 2016, 780(16):32-37.

    [51]

    Shu J C, Liu R L, Liu Z H, et al. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue[J]. Environmental science & pollution research, 2015, 22(20):16004-16013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=181b994cbdd8fd4edb4934fe1df01b91

    [52]

    Shu J C, Liu R L, Liu Z H, et al. Manganese recovery and ammonia nitrogen removal from simulation wastewater by pulse electrolysis[J]. Separation and purification technology, 2016, 168:107-113. doi: 10.1016/j.seppur.2016.05.035

    [53]

    马小霞, 袁玉南, 唐金晶, 等.电化学氧化法去除电解锰渣中的氨氮[J].环境化学, 2016, 35(12):2592-2598. doi: 10.7524/j.issn.0254-6108.2016.12.2016053005

    [54]

    Shu J C, Liu R L, Wu H P, et al. Adsorption of methylene blue on modified electrolytic manganese residue:Kinetics, isotherm, thermodynamics and mechanism analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82:351-359. doi: 10.1016/j.jtice.2017.11.020

    [55]

    Li C X, Zhong H, Wang S, et al. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue[J]. Journal of industrial & engineering chemistry, 2015, 23:344-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=830820711b66acf9626aa456b948ae54

    [56]

    Li C X, Zhong H, Wang S, et al. A novel conversion process for waste residue:Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals[J]. Colloids & surfaces a physicochemical & engineering aspects, 2015, 470:258-267. http://cn.bing.com/academic/profile?id=7789cac66fced85cc37ef9830b12b5dd&encoded=0&v=paper_preview&mkt=zh-cn

    [57]

    Li C X, Zhong H, Wang S, et al. Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties[J]. Journal of Central South University, 2015, 22(7):2493-2502. doi: 10.1007/s11771-015-2777-2

    [58]

    Zhang D H, Xiao D Y, Yu Q, et al. Preparation of mesoporous silica from electrolytic manganese slags by using amino-ended hyperbranched polyamide as template[J]. Acs sustainable chemistry & engineering, 2017, 5(11):10258-10265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=804c04784561061f4dc670efc1558491

  • 加载中

(1)

计量
  • 文章访问数:  2573
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2019-03-03
刊出日期:  2019-06-25

目录