Review on Decontamination and Resource Utilization of Electrolytic Manganese Residue Technology
-
摘要:
电解锰渣属第Ⅱ类一般工业固废。随着电解锰渣产量的增加和国家对环保要求的提高,电解锰渣的合理处置问题受到了越来越多的关注。根据电解锰渣的利用级别,可将电解锰渣的处理方式分为安全堆存、无害化处理和资源化利用三个层次。根据技术特征,可以将电解锰渣处理技术分为安全堆存技术、干法处理技术、火法处理技术及湿法处理技术四大类。本文按照电解锰渣的处理技术特征,对近年来的相关研究进展进行探讨,以期寻找到在技术、经济、市场容量或消纳能力及标准要求等方面同时可行的方案。
Abstract:Electrolytic manganese slag belongs to the class Ⅱ general industrial solid waste. With the increase of the output of electrolytic manganese residue and the improvement of environmental requirements, reasonable treatment methods for the electrolytic manganese residue are catching more and more attention. Based on the utilization level of electrolytic manganese slag, the treatment methods of electrolytic manganese slag can be divided into three aspects which are safe storage, harmless treatment and resource utilization, respectively. According to the technical characteristics, the treatment technology of electrolytic manganese slag can be divided into four categories which are safe storage technology, dry treatment technology, fire treatment technology and wet treatment technology, respectively. According to the characteristics of electrolytic manganese slag treatment technology, the paper discussed the related research progress in recent years in order to find feasible solutions in technology, economy, market capacity or absorptive capacity and standard requirements.
-
Key words:
- electrolytic manganese residue /
- decontamination /
- resource /
- review
-
-
表 1 电解锰渣中硫酸盐分解反应方程式及所需温度
Table 1. Sulfate decomposition equation and temperature in the electrolytic manganese residue
直接高温煅烧 2(NH4)2SO4=
4NH3(g)+2SO2(g) + 2H2O(g) + O2(g)T≥600 ℃ 4MnSO4=2Mn2O3+4SO2(g)+O2(g) T≥970 ℃ 3MnSO4=Mn3O4+3SO2(g)+O2(g) T≥980 ℃ MnSO4=MnO2+SO2(g) T≥1 120 ℃ 2MgSO4=2MgO+2SO2(g)+O2(g) T≥1 040 ℃ 2CaSO4=2CaO+2SO2(g)+O2(g) T≥1 670 ℃ 加还原碳粉焙烧 2(NH4)2SO4+C=
4NH3(g)+2SO2(g)+2H2O(g)+CO2(g)T≥240 ℃ 4MnSO4+C=2Mn2O3+4SO2(g)+CO2(g) T≥420 ℃ 3MnSO4+C= Mn3O4+3SO2(g)+CO2(g) T≥530 ℃ 2MgSO4+C=2MgO+2SO2(g)+CO2(g) T≥310 ℃ 2CaSO4 +C=2CaO+2SO2(g)+CO2(g) T≥850 ℃ -
[1] 高武斌, 王志增, 赵伟洁, 等.电解锰渣复合Fe-Mn-Cu-Co系红外辐射材料的制备及性能研究[J].功能材料, 2015, 46(6):6076-6080. doi: 10.3969/j.issn.1001-9731.2015.06.016
[2] 王积伟, 周长波, 杜兵, 等.电解锰渣无害化处理技术[J].环境工程学报, 2014, 8(1):329-333. http://d.old.wanfangdata.com.cn/Thesis/Y2088190
[3] 赵虎腾, 李远霞, 谭德斌, 等.电解锰渣的理化特性与物相转变研究[J].广东化工, 2017, 44(7):64-66. doi: 10.3969/j.issn.1007-1865.2017.07.029
[4] 王勇.电解锰渣作水泥混合材的研究[J].新型建筑材料, 2016, 43(5):78-80. doi: 10.3969/j.issn.1001-702X.2016.05.019
[5] Duan N, Dan Z G, Wang F, et al. Electrolytic manganese metal industry experience based China's new model for cleaner production promotion[J]. Journal of cleaner production, 2011, 19(17):2082-2087. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c080b49b7abff1a032cec3a3ae21168
[6] 蒙美福, 周立强.电解金属锰渣库建设环境安全性问题初探[J].中国锰业, 2010, 28(2):51-53. doi: 10.3969/j.issn.1002-4336.2010.02.014
[7] Li C X, Zhong H, Wang S, et al. Leaching behavior and risk assessment of heavy metals in a landfill of electrolytic manganese residue in western Hunan, China[J]. Human & ecological risk assessment an international journal, 2014, 20(5):1249-1263. http://cn.bing.com/academic/profile?id=0d57404886ff2e32cfb62f44d427f17d&encoded=0&v=paper_preview&mkt=zh-cn
[8] 刘宁, 甘宇宁, 陈兵.防渗电解锰渣库流固耦合稳定性分析[J].矿冶工程, 2014, 34(2):20-24. doi: 10.3969/j.issn.0253-6099.2014.02.005
[9] 舒建成.电解锰渣中锰和氨氮的强化转化方法研究[D].重庆: 重庆大学, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-10611-1017838797.htm [10] 方选进, 王智, 钱觉时, 等.电解锰渣的水泥固化与浸出毒性研究[J].安全与环境学报, 2010, 10(5):46-49. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201005012
[11] Shu J C, Wu H P, Liu R L, et al. Simultaneous stabilization/solidification of Mn2+and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource[J]. Ecotoxicology & environmental safety, 2018, 148(4):220-227.
[12] Shu J C, Liu R L, Liu Z H, et al. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of hazardous materials, 2016, 317:267-274. doi: 10.1016/j.jhazmat.2016.05.076
[13] Du B, Hou D Y, Duan N, et al. Immobilization of high concentrations of soluble Mn(Ⅱ) from electrolytic manganese solid waste using inorganic chemicals[J]. Environmental science & pollution research international, 2015, 22(10):7782-7793. http://cn.bing.com/academic/profile?id=98195147f50ce9e44ae2694267b8fb5a&encoded=0&v=paper_preview&mkt=zh-cn
[14] Du B, Zhou C B, Dan Z G, et al. Aging of solidified/stabilized electrolytic manganese solid waste with accelerated carbonation and aging inhibition[J]. Environ sci pollut res int, 2016, 23(23):24195-24204. doi: 10.1007/s11356-016-7635-8
[15] 蒋艳宇, 戴慧敏, 陈朝猛, 等.电解锰渣固化/稳定化处理及其浸出毒性分析[J].安徽农学通报, 2018, 24(22):131-134. doi: 10.3969/j.issn.1007-7731.2018.22.051
[16] 李坦平, 何晓梅, 谢华林, 等.电解锰渣-生石灰-低等级粉煤灰复合掺合料的试验研究[J].新型建筑材料, 2007, 34(1):66-69. doi: 10.3969/j.issn.1001-702X.2007.01.022
[17] 陈平, 张路辉, 刘荣进, 等.废石粉-锰渣微粉制备自流平砂浆的试验研究[J].混凝土, 2016, 325(11):116-118. doi: 10.3969/j.issn.1002-3550.2016.11.031
[18] Zhou C B, D B, Wang N F, et al. Preparation and strength property of autoclaved bricks fromelectrolytic manganese residue[J]. Journal of cleaner production, 2014, 84(1):707-714.
[19] Du B, Zhou C B, Dan Z G, et al. Preparation and characteristics of steam-autoclaved bricks produced from electrolytic manganese solid waste[J]. Construction & building materials, 2014, 50(1):291-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fb66758b21306b2f42a1a503a73890e
[20] Qin J T, Wang J W, Wang H F, et al. Effect of aggregate addition on the properties of unburned brick of electrolytic manganese slag[J]. Iop conference series:earth & environmental science. DOI:10.1088/1755-1315/94/1/012173.
[21] 徐放, 王星敏, 谢金连, 等.锰尾矿中锰对小麦生长的营养效应[J].贵州农业科学, 2010, 38(8):56-58. doi: 10.3969/j.issn.1001-3601.2010.08.020
[22] Li J, Du D Y, Peng Q J, et al. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting[J]. Journal of cleaner production, 2018, 192:347-353. doi: 10.1016/j.jclepro.2018.04.184
[23] 刘唐猛.电解锰渣复混肥的制备工艺研究[D].长沙: 中南大学, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10533-1012478766.htm [24] Wu F F, Li X P, Zhong H, et al. Utilization of electrolytic manganese residues in production of porous ceramics[J]. International journal of applied ceramic technology, 2016, 13(3):511-521. doi: 10.1111/ijac.12502
[25] Wu F F, Wang S, Guo S Y, et al. Adsorption of methylene blue by porous ceramics prepared from electrolytic manganese residues[J]. Desalination & water treatment, 2016, 57(57):1-11.
[26] 谢子楠, 吴思展, 杨晓红, 等.锰渣制多孔材料的制备及其对含汞废水的初步处理[J].广州化工, 2018, 46(10):72-74. doi: 10.3969/j.issn.1001-9677.2018.10.024
[27] 吴建锋, 宋谋胜, 徐晓虹, 等.利用锰渣制备钙长石/顽辉石复相陶瓷[J].武汉理工大学学报, 2014, 36(7):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201407002
[28] 冉岚, 刘少友, 文正康.电解锰渣-废玻璃低温烧结制备陶瓷砖的研究[J].无机盐工业, 2014, 46(7):56-58. doi: 10.3969/j.issn.1006-4990.2014.07.016
[29] 冉岚, 刘少友, 文正康.利用电解锰渣制备多孔陶瓷材料[J].非金属矿, 2014(4):30-31. doi: 10.3969/j.issn.1000-8098.2014.04.010
[30] 王功勋, 李志, 祝明桥.电解锰废渣-废陶瓷磨细粉制备再生陶瓷砖[J].硅酸盐通报, 2013, 32(8):1496-1501. http://d.old.wanfangdata.com.cn/Periodical/gsytb201308007
[31] 叶芬, 成昊, 徐丽, 等.利用电解锰渣制备轻质多孔陶瓷块状材料的研究[J].无机盐工业, 2018, 50(10):66-69. http://d.old.wanfangdata.com.cn/Periodical/wjygy201810016
[32] 张杰, 练强, 王建蕊, 等.利用锰渣制备陶瓷墙地砖试验研究[J].中国陶瓷工业, 2009, 16(3):16-19. doi: 10.3969/j.issn.1006-2874.2009.03.005
[33] 王勇.电解锰渣作为水泥矿化剂的研究[J].混凝土, 2010(8):90-93. doi: 10.3969/j.issn.1002-3550.2010.08.031
[34] Hou P K, Qian J S, Wang Z, et al. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue[J]. Cement & concrete composites, 2012, 34(2):248-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e1f79ec6abb1d58aa661aec7984a1c2
[35] Wang J, Peng B, Chai L Y, et al. Preparation of electrolytic manganese residue-ground granulated blastfurnace slag cement[J]. Powder technology, 2013, 241:12-18. doi: 10.1016/j.powtec.2013.03.003
[36] Li Q Z, Liu Q, Peng B, et al. Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue[J]. Construction & building materials, 2016, 106:236-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=952f314e921728a08e418e19cfe6d228
[37] Yang C, Lv X X, Tian X K, et al. An investigation on the use of electrolytic manganese residue as filler in sulfur concrete[J]. Construction & building materials, 2014, 73(73):305-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deacc1794064e2ed7c866b432e83dad9
[38] 赵世珍, 韩凤兰, 王亚光.电解锰渣-镁渣制备复合矿渣硫铝酸盐水泥熟料的研究[J].硅酸盐通报, 2017, 36(5):1766-1772. http://d.old.wanfangdata.com.cn/Periodical/gsytb201705054
[39] 张金龙, 彭兵, 柴立元, 等.电解锰渣-页岩-粉煤灰烧结砖的研制[J].环境科学与技术, 2011, 34(1):144-147. http://d.old.wanfangdata.com.cn/Periodical/hjkxyjs201101034
[40] 李昌新, 钟宏, 王帅, 等.电解金属锰渣中重金属的固化新技术[J].中国锰业, 2014(4):23-26. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201404009
[41] Du B, Zhou C B, Li X H, et al. A kinetic study of Mn(Ⅱ) precipitation of leached aqueous solution from electrolytic manganese residues[J]. Toxicological & environmental chemistry reviews, 2015, 97(3-4):349-357.
[42] Peng T F, Xu L J, Wang X M. Leaching of manganese residue for the preparation of trimanganese tetroxide with a high surface area[J]. Chinese journal of geochemistry, 2013, 32(3):331-336. doi: 10.1007/s11631-013-0640-4
[43] Peng T F, Xu L J, Chen H C. Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue[J]. Central european journal of chemistry, 2010, 8(5):1059-1068. http://d.old.wanfangdata.com.cn/NSTLQK/10.2478-s11532-010-0081-4/
[44] Yang W Q, An J, Yuan X L, et al. Manganese removal from electrolytic manganese residue using ozone[J]. Advanced materials research, 2014, 997:754-757. doi: 10.4028/www.scientific.net/AMR.997.754
[45] Wang N F, Fang Z J, Sui P, et al. Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2[J]. Hydrometallurgy, 2016, 164:288-294. doi: 10.1016/j.hydromet.2016.06.019
[46] Chen H L, Liu R L, Liu Z H, et al. Immobilization of Mn and NH4+-N from electrolytic manganese residue waste[J]. Environmental science & pollution research, 2016, 23(12):12352-12361.
[47] Chen H L, Liu R L, Shu J C, et al. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist[J]. Environmental letters, 2015, 50(12):1282-1290.
[48] Xin B P, Chen B, Duan N, et al. Extraction of manganese from electrolytic manganese residue by bioleaching[J]. Bioresource technology, 2011, 102(2):1683-1687. doi: 10.1016/j.biortech.2010.09.107
[49] Lan J R, Sun Y, Guo L, et al. A novel method to recover ammonia, manganese and sulfate from electrolytic manganese residues by bio-leaching[J]. Journal of cleaner production, 2019, 223:499-507. doi: 10.1016/j.jclepro.2019.03.098
[50] Shu J C, Liu R L, Liu Z H, et al. Leaching of manganese from electrolytic manganese residue by electro-reduction[J]. Journal of electroanalytical chemistry, 2016, 780(16):32-37.
[51] Shu J C, Liu R L, Liu Z H, et al. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue[J]. Environmental science & pollution research, 2015, 22(20):16004-16013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=181b994cbdd8fd4edb4934fe1df01b91
[52] Shu J C, Liu R L, Liu Z H, et al. Manganese recovery and ammonia nitrogen removal from simulation wastewater by pulse electrolysis[J]. Separation and purification technology, 2016, 168:107-113. doi: 10.1016/j.seppur.2016.05.035
[53] 马小霞, 袁玉南, 唐金晶, 等.电化学氧化法去除电解锰渣中的氨氮[J].环境化学, 2016, 35(12):2592-2598. doi: 10.7524/j.issn.0254-6108.2016.12.2016053005
[54] Shu J C, Liu R L, Wu H P, et al. Adsorption of methylene blue on modified electrolytic manganese residue:Kinetics, isotherm, thermodynamics and mechanism analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82:351-359. doi: 10.1016/j.jtice.2017.11.020
[55] Li C X, Zhong H, Wang S, et al. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue[J]. Journal of industrial & engineering chemistry, 2015, 23:344-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=830820711b66acf9626aa456b948ae54
[56] Li C X, Zhong H, Wang S, et al. A novel conversion process for waste residue:Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals[J]. Colloids & surfaces a physicochemical & engineering aspects, 2015, 470:258-267. http://cn.bing.com/academic/profile?id=7789cac66fced85cc37ef9830b12b5dd&encoded=0&v=paper_preview&mkt=zh-cn
[57] Li C X, Zhong H, Wang S, et al. Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties[J]. Journal of Central South University, 2015, 22(7):2493-2502. doi: 10.1007/s11771-015-2777-2
[58] Zhang D H, Xiao D Y, Yu Q, et al. Preparation of mesoporous silica from electrolytic manganese slags by using amino-ended hyperbranched polyamide as template[J]. Acs sustainable chemistry & engineering, 2017, 5(11):10258-10265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=804c04784561061f4dc670efc1558491
-