矿物催化臭氧氧化乙硫氨酯的效率和矿化行为研究

林小凤, 傅平丰, 马艳红, 王亮华. 矿物催化臭氧氧化乙硫氨酯的效率和矿化行为研究[J]. 矿产保护与利用, 2020, 40(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2020.01.001
引用本文: 林小凤, 傅平丰, 马艳红, 王亮华. 矿物催化臭氧氧化乙硫氨酯的效率和矿化行为研究[J]. 矿产保护与利用, 2020, 40(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2020.01.001
LIN Xiaofeng, FU Pingfeng, MA Yanhong, WANG Lianghua. Removal Efficiency and Mineralization in Catalytic Ozonation of O-isopropyl-N-ethyl Thionocarbamate by Minerals in Flotation Wastewaters[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2020.01.001
Citation: LIN Xiaofeng, FU Pingfeng, MA Yanhong, WANG Lianghua. Removal Efficiency and Mineralization in Catalytic Ozonation of O-isopropyl-N-ethyl Thionocarbamate by Minerals in Flotation Wastewaters[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2020.01.001

矿物催化臭氧氧化乙硫氨酯的效率和矿化行为研究

  • 基金项目:
    国家科学自然基金项目(51674017)
详细信息
    作者简介: 林小凤(1994-), 女, 江西赣州人, 硕士研究生, 主要从事矿山废水处理与回用研究, E-mail:lxf1120120338@163.com
    通讯作者: 傅平丰(1976—), 男, 浙江诸暨人, 博士, 副教授, 主要从事矿山废水处理与回用研究, E-mail:pffu@ces.ustb.edu.cn
  • 中图分类号: X703

Removal Efficiency and Mineralization in Catalytic Ozonation of O-isopropyl-N-ethyl Thionocarbamate by Minerals in Flotation Wastewaters

More Information
  • 浮选废水中残留固体悬浮物具有催化臭氧氧化作用,考察了四种硫化矿(黄铁矿、黄铜矿、方铅矿及闪锌矿)和四种非金属矿(石英、方解石、高岭土及蒙脱土)对臭氧氧化乙硫氨酯效率的影响及矿化行为。结果表明,矿物强化臭氧氧化乙硫氨酯降解效率高低顺序为方铅矿>黄铁矿>闪锌矿>黄铜矿(硫化矿)和高岭土>蒙脱土>方解石>石英(非金属矿),投加0.5 g/L方铅矿和高岭土后,乙硫氨酯降解速率常数分别提高了1.57倍和0.82倍,明显促进乙硫氨酯降解和中间产物的分解;降解后溶液pH值从10.0降至约8.0,氧化还原电位从-23 mV上升到约200 mV。矿物颗粒促进臭氧分解,生成更多强氧化性物种,提高降解效率,浮选废水中残留矿物颗粒是天然臭氧分解催化剂,可构成催化臭氧氧化体系。

  • 加载中
  • 图 1  矿物催化臭氧氧化乙硫氨酯的试验装置

    Figure 1. 

    图 2  硫化矿吸附去除乙硫氨酯捕收剂

    Figure 2. 

    图 3  硫化矿催化臭氧氧化乙硫氨酯捕收剂

    Figure 3. 

    图 4  非金属矿吸附去除乙硫氨酯捕收剂

    Figure 4. 

    图 5  非金属矿催化臭氧氧化乙硫氨酯捕收剂

    Figure 5. 

    图 6  矿物催化臭氧氧化乙硫氨酯捕收剂的COD去除率和SO42-浓度

    Figure 6. 

    图 7  O3-alone、O3/方铅矿和O3/高岭土降解乙硫氨酯捕收剂的SO42-浓度变化

    Figure 7. 

    图 8  O3、O3/方铅矿和O3/高岭土降解乙硫氨酯过程中溶液pH (a)和ORP (b)的变化

    Figure 8. 

    表 1  硫化矿催化臭氧氧化乙硫氨酯捕收剂的去除率和动力学方程

    Table 1.  Removal rates and kinetic equations of catalytic ozonation of Z-200 collector by sulfide minerals

    Catalytic systemRemoval rate of Z-200 (%)Kinetic equationskapp (min-1)R2
    O3-alone97.91ln(Ct/C0)=-0.0315t-0.04000.03150.992
    O3/calcite98.53ln(Ct/C0)=-0.0444t-0.00510.04440.989
    O3/montmorillonite98.96ln(Ct/C0)=-0.051t-0.03070.0510.997
    O3/quartz98.43ln(Ct/C0)=-0.04234t-0.0450.04230.995
    O3/kaoline99.33ln(Ct/C0)=-0.0572t-0.04180.05720.998
    下载: 导出CSV

    表 2  非金属矿催化臭氧氧化乙硫氨酯捕收剂的去除率和动力学方程

    Table 2.  Removal rates and kinetic equations of catalytic ozonation of Z-200 collector by non-metallic minerals

    Catalytic systemRemoval rate of Z-200 (%)Kinetic equationskapp (min-1)R2
    O3-alone97.91ln(Ct/C0)=-0.0315t-0.04000.03150.992
    O3/calcite98.53ln(Ct/C0)=-0.0444t-0.00510.04440.989
    O3/montmorillonite98.96ln(Ct/C0)=-0.051t-0.03070.0510.997
    O3/quartz98.43ln(Ct/C0)=-0.04234t-0.0450.04230.995
    O3/kaoline99.33ln(Ct/C0)=-0.0572t-0.04180.05720.998
    下载: 导出CSV

    表 3  O3-alone和O3/矿物体系降解乙硫氨酯捕收剂的COD去除率和硫的矿化率

    Table 3.  Removal rates of COD and sulfur mineralization rates of Z-200 degradation by O3-alone and O3/minerals

    Catalytic systemsRemoval rate of COD (%)Sulfur mineralization rate (%)
    O3-alone15.7471.48
    O3/calcite16.9787.06
    O3/montmorillonite22.7993.07
    O3/quartz16.6485.51
    O3/kaoline32.8194.87
    O3/sphalerite17.7787.65
    O3/pyrite21.3891.20
    O3/galena25.7896.83
    O3/chalcopyrite20.6990.21
    下载: 导出CSV
  • [1]

    Chen S H, Xiong P, Zhan W, et al. Degradation of ethylthionocarbamate by pyrite-activated persulfate[J]. Minerals Engineering, 2018, 122:38-43. doi: 10.1016/j.mineng.2018.03.022

    [2]

    Cheng H, Lin H, Huo H X, et al. Continuous removal of ore flotation reagents by an anaerobic-aerobic biological filter[J]. Bioresource Technology, 2012, 114:255-261. doi: 10.1016/j.biortech.2012.03.088

    [3]

    Molina G C, Cayo C H, Rodrigues M A S, et al. Sodium isopropyl xanthate degradation by advanced oxidation process[J]. Minerals Engineering, 2013, 45:88-93. doi: 10.1016/j.mineng.2012.12.001

    [4]

    Chen S H, Gong W Q, Mei G J, et al. Primary biodegradation of sulfide mineral flotation collectors[J]. Minerals Engineering, 2011, 24:953-955. doi: 10.1016/j.mineng.2011.01.003

    [5]

    Chen S H, Gong W Q, Mei G J, et al. Quantitative structure-biodegradability relationship of sulfide mineral flotation collectors[J]. International Journal of Mineral Processing, 2011, 101:112-115. doi: 10.1016/j.minpro.2011.09.001

    [6]

    Fu P F, Feng J, Yang T W, et al. Comparison of alkyl xanthates degradation in aqueous solution by the O3 and UV/O3 processes:Efficiency, mineralization and ozone utilization[J]. Minerals Engineering, 2015, 81:128-134. doi: 10.1016/j.mineng.2015.08.001

    [7]

    Rezaei R, Massinaei M, Zeraatkar M A. Removal of the residual xanthate from flotation plant tailings using modified bentonite[J]. Minerals Engineering, 2018, 119:1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d95ca788f246a36d6f405de2ec52fbd

    [8]

    Silvester E, Truccolo D, Fu P H. Kinetics and mechanism of the oxidation of ethyl xanthate and ethyl thiocarbonate by hydrogen peroxide[J]. Journal of the Chemical Society, Perkin Transactions, 2002, 2(9):1562-1571. http://www.researchgate.net/publication/244550008_Kinetics_and_mechanism_of_the_oxidation_of_ethyl_xanthate_and_ethyl_thiocarbonate_by_hydrogen_peroxide?ev=prf_cit

    [9]

    Grzegorz B, André F. Wastewater treatment by means of advanced oxidation processes at basic pH conditions:A review[J]. Chemical Engineering Journal, 2017, 320:608-633. doi: 10.1016/j.cej.2017.03.084

    [10]

    Miriam B, Rubí R, Gabriela R, et al. Ozonation of indigo carmine catalyzed with Fe-pillared clay[J]. International Journal of Photoenergy, 2013, 10:1-7. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7c1615e42871ac348a303292e117d586

    [11]

    Dariush S, René R, Abdelkrim A. Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts[J]. Applied Catalysis B:Environmental, 2015, 174:277-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a3aedaa1e10634255110339ad201325

    [12]

    Jung H, Choi H. Catalytic decomposition of ozone and para-chlorobenzoic acid (pCBA) in the presence of nanosized ZnO[J]. Applied Catalysis B:Environmental, 2006, 66:288-294. doi: 10.1016/j.apcatb.2006.03.009

    [13]

    Kasprzyk-Hordern B, Ziolek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J], Applied Catalysis B:Environmental, 2003, 46:639-669. doi: 10.1016/S0926-3373(03)00326-6

    [14]

    Behera S K, Mishra D P, Ghosh C N, et al. Characterization of lead-zinc mill tailings, fly ash and their mixtures for paste backfilling in underground metalliferous mines[J]. Environmental Earth Sciences, 2019, 78:394. doi: 10.1007/s12665-019-8395-9

    [15]

    Quinteros J, Wightmana E, Johnson N W, et al. Evaluation of the response of valuable and gangue minerals on a recovery, size and liberation basis for a low-grade silver ore[J]. Minerals Engineering, 2015, 74:150-155. doi: 10.1016/j.mineng.2014.12.019

    [16]

    Lei C, Yan B, Chen T, et al. Comprehensive utilization of lead-zinc tailings, part 1:Pollution characteristics and resource recovery of sulfur[J]. Journal of Environmental Chemical Engineering, 2015, 3:862-869. doi: 10.1016/j.jece.2015.03.015

    [17]

    Ikhlaq A, Brown D R, Kasprzyk-Hordern B. Mechanisms of catalytic ozonation on alumina and zeolites in water:formation of hydroxyl radicals[J]. Applied Catalysis B:Environmental, 2012, 123:94-106.

    [18]

    齐飞.铝氧化物催化臭氧氧化水中嗅味物质的效能与机理研究[D].哈尔滨: 哈尔滨工业大学, 2008.http://d.wanfangdata.com.cn/Thesis/D272029

    [19]

    Fu P F, Lin X F, Li G, et al. Degradation of thiol collectors using ozone at a low dosage:Kinetics, mineralization, ozone utilization, and changes of biodegradability and water quality parameters[J]. Minerals, 2018, 8:477. doi: 10.3390/min8110477

    [20]

    孙贤波, 赵庆详, 曹国民, 等.高级氧化法的特性及应用[J].中国给水排水, 2002, 18(5):33-35. doi: 10.3321/j.issn:1000-4602.2002.05.010

    [21]

    Camel V, Bermond A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research, 1998, 32(11):3208-3222. doi: 10.1016/S0043-1354(98)00130-4

    [22]

    Hoigné J, Bader H. Rate constants of reaction of ozone with organic compounds[J]. Water Research, 1983, 17(2):173-185. doi: 10.1016/0043-1354(83)90098-2

    [23]

    刘玥.硅酸盐催化剂制备及其催化臭氧氧化水中氯代硝基苯[D].哈尔滨: 哈尔滨工业大学, 2011.http://d.wanfangdata.com.cn/Thesis/D263810

    [24]

    翟旭.纳米ZnO催化臭氧氧化去除饮用水中二氯乙酸的效能与机理[D].哈尔滨: 哈尔滨工业大学, 2010.http://d.wanfangdata.com.cn/Thesis/D269227

    [25]

    申亚东.蒙脱土基改性催化剂的制备及催化臭氧化效能研究[D].哈尔滨: 哈尔滨工业大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10213-1017863160.htm

  • 加载中

(8)

(3)

计量
  • 文章访问数:  900
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2019-10-25
刊出日期:  2020-02-25

目录