Removal Efficiency and Mineralization in Catalytic Ozonation of O-isopropyl-N-ethyl Thionocarbamate by Minerals in Flotation Wastewaters
-
摘要:
浮选废水中残留固体悬浮物具有催化臭氧氧化作用,考察了四种硫化矿(黄铁矿、黄铜矿、方铅矿及闪锌矿)和四种非金属矿(石英、方解石、高岭土及蒙脱土)对臭氧氧化乙硫氨酯效率的影响及矿化行为。结果表明,矿物强化臭氧氧化乙硫氨酯降解效率高低顺序为方铅矿>黄铁矿>闪锌矿>黄铜矿(硫化矿)和高岭土>蒙脱土>方解石>石英(非金属矿),投加0.5 g/L方铅矿和高岭土后,乙硫氨酯降解速率常数分别提高了1.57倍和0.82倍,明显促进乙硫氨酯降解和中间产物的分解;降解后溶液pH值从10.0降至约8.0,氧化还原电位从-23 mV上升到约200 mV。矿物颗粒促进臭氧分解,生成更多强氧化性物种,提高降解效率,浮选废水中残留矿物颗粒是天然臭氧分解催化剂,可构成催化臭氧氧化体系。
Abstract:Residual minerals in flotation wastewaters can promote the degradation of pollutants by the catalytic ozonation. In this work, the catalytic ozonation of O-isopropyl-N-ethyl thionocarbamate (Z-200) was investigated by sulfide minerals (pyrite, chalcopyrite, galena and sphalerite) and nonmetallic minerals (quartz, calcite, kaoline and montmorillonite), respectively. The results indicated that the dosage of minerals could increase the decomposition efficiency of Z-200 collector with an enhancement order of galena > pyrite > sphalerite > chalcopyrite (sulfide minerals) and kaoline > montmorillonite > calcite > quartz (nonmetallic minerals). In particular, the decomposition rate constant of Z-200 increased by 1.57 and 0.82 folds for the dosage of 0.5 g/L galena and kaoline into O3 system, respectively. The O3/mineral systems could enhance the decomposition of both Z-200 and its byproducts compared to O3-alone. After the decomposition of Z-200, solution pH reduced from 10.0 to about 8.0 and the redox potential increased from -23 to about 200 mV. The mineral particles can promote the decomposition of O3 molecules, generating much higher amounts of oxidative species. Mineral particles in flotation wastewaters are natural catalysts to form the catalytic ozonation systems in the removal of flotation reagents.
-
-
表 1 硫化矿催化臭氧氧化乙硫氨酯捕收剂的去除率和动力学方程
Table 1. Removal rates and kinetic equations of catalytic ozonation of Z-200 collector by sulfide minerals
Catalytic system Removal rate of Z-200 (%) Kinetic equations kapp (min-1) R2 O3-alone 97.91 ln(Ct/C0)=-0.0315t-0.0400 0.0315 0.992 O3/calcite 98.53 ln(Ct/C0)=-0.0444t-0.0051 0.0444 0.989 O3/montmorillonite 98.96 ln(Ct/C0)=-0.051t-0.0307 0.051 0.997 O3/quartz 98.43 ln(Ct/C0)=-0.04234t-0.045 0.0423 0.995 O3/kaoline 99.33 ln(Ct/C0)=-0.0572t-0.0418 0.0572 0.998 表 2 非金属矿催化臭氧氧化乙硫氨酯捕收剂的去除率和动力学方程
Table 2. Removal rates and kinetic equations of catalytic ozonation of Z-200 collector by non-metallic minerals
Catalytic system Removal rate of Z-200 (%) Kinetic equations kapp (min-1) R2 O3-alone 97.91 ln(Ct/C0)=-0.0315t-0.0400 0.0315 0.992 O3/calcite 98.53 ln(Ct/C0)=-0.0444t-0.0051 0.0444 0.989 O3/montmorillonite 98.96 ln(Ct/C0)=-0.051t-0.0307 0.051 0.997 O3/quartz 98.43 ln(Ct/C0)=-0.04234t-0.045 0.0423 0.995 O3/kaoline 99.33 ln(Ct/C0)=-0.0572t-0.0418 0.0572 0.998 表 3 O3-alone和O3/矿物体系降解乙硫氨酯捕收剂的COD去除率和硫的矿化率
Table 3. Removal rates of COD and sulfur mineralization rates of Z-200 degradation by O3-alone and O3/minerals
Catalytic systems Removal rate of COD (%) Sulfur mineralization rate (%) O3-alone 15.74 71.48 O3/calcite 16.97 87.06 O3/montmorillonite 22.79 93.07 O3/quartz 16.64 85.51 O3/kaoline 32.81 94.87 O3/sphalerite 17.77 87.65 O3/pyrite 21.38 91.20 O3/galena 25.78 96.83 O3/chalcopyrite 20.69 90.21 -
[1] Chen S H, Xiong P, Zhan W, et al. Degradation of ethylthionocarbamate by pyrite-activated persulfate[J]. Minerals Engineering, 2018, 122:38-43. doi: 10.1016/j.mineng.2018.03.022
[2] Cheng H, Lin H, Huo H X, et al. Continuous removal of ore flotation reagents by an anaerobic-aerobic biological filter[J]. Bioresource Technology, 2012, 114:255-261. doi: 10.1016/j.biortech.2012.03.088
[3] Molina G C, Cayo C H, Rodrigues M A S, et al. Sodium isopropyl xanthate degradation by advanced oxidation process[J]. Minerals Engineering, 2013, 45:88-93. doi: 10.1016/j.mineng.2012.12.001
[4] Chen S H, Gong W Q, Mei G J, et al. Primary biodegradation of sulfide mineral flotation collectors[J]. Minerals Engineering, 2011, 24:953-955. doi: 10.1016/j.mineng.2011.01.003
[5] Chen S H, Gong W Q, Mei G J, et al. Quantitative structure-biodegradability relationship of sulfide mineral flotation collectors[J]. International Journal of Mineral Processing, 2011, 101:112-115. doi: 10.1016/j.minpro.2011.09.001
[6] Fu P F, Feng J, Yang T W, et al. Comparison of alkyl xanthates degradation in aqueous solution by the O3 and UV/O3 processes:Efficiency, mineralization and ozone utilization[J]. Minerals Engineering, 2015, 81:128-134. doi: 10.1016/j.mineng.2015.08.001
[7] Rezaei R, Massinaei M, Zeraatkar M A. Removal of the residual xanthate from flotation plant tailings using modified bentonite[J]. Minerals Engineering, 2018, 119:1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d95ca788f246a36d6f405de2ec52fbd
[8] Silvester E, Truccolo D, Fu P H. Kinetics and mechanism of the oxidation of ethyl xanthate and ethyl thiocarbonate by hydrogen peroxide[J]. Journal of the Chemical Society, Perkin Transactions, 2002, 2(9):1562-1571. http://www.researchgate.net/publication/244550008_Kinetics_and_mechanism_of_the_oxidation_of_ethyl_xanthate_and_ethyl_thiocarbonate_by_hydrogen_peroxide?ev=prf_cit
[9] Grzegorz B, André F. Wastewater treatment by means of advanced oxidation processes at basic pH conditions:A review[J]. Chemical Engineering Journal, 2017, 320:608-633. doi: 10.1016/j.cej.2017.03.084
[10] Miriam B, Rubí R, Gabriela R, et al. Ozonation of indigo carmine catalyzed with Fe-pillared clay[J]. International Journal of Photoenergy, 2013, 10:1-7. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7c1615e42871ac348a303292e117d586
[11] Dariush S, René R, Abdelkrim A. Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts[J]. Applied Catalysis B:Environmental, 2015, 174:277-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a3aedaa1e10634255110339ad201325
[12] Jung H, Choi H. Catalytic decomposition of ozone and para-chlorobenzoic acid (pCBA) in the presence of nanosized ZnO[J]. Applied Catalysis B:Environmental, 2006, 66:288-294. doi: 10.1016/j.apcatb.2006.03.009
[13] Kasprzyk-Hordern B, Ziolek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J], Applied Catalysis B:Environmental, 2003, 46:639-669. doi: 10.1016/S0926-3373(03)00326-6
[14] Behera S K, Mishra D P, Ghosh C N, et al. Characterization of lead-zinc mill tailings, fly ash and their mixtures for paste backfilling in underground metalliferous mines[J]. Environmental Earth Sciences, 2019, 78:394. doi: 10.1007/s12665-019-8395-9
[15] Quinteros J, Wightmana E, Johnson N W, et al. Evaluation of the response of valuable and gangue minerals on a recovery, size and liberation basis for a low-grade silver ore[J]. Minerals Engineering, 2015, 74:150-155. doi: 10.1016/j.mineng.2014.12.019
[16] Lei C, Yan B, Chen T, et al. Comprehensive utilization of lead-zinc tailings, part 1:Pollution characteristics and resource recovery of sulfur[J]. Journal of Environmental Chemical Engineering, 2015, 3:862-869. doi: 10.1016/j.jece.2015.03.015
[17] Ikhlaq A, Brown D R, Kasprzyk-Hordern B. Mechanisms of catalytic ozonation on alumina and zeolites in water:formation of hydroxyl radicals[J]. Applied Catalysis B:Environmental, 2012, 123:94-106.
[18] 齐飞.铝氧化物催化臭氧氧化水中嗅味物质的效能与机理研究[D].哈尔滨: 哈尔滨工业大学, 2008.
http://d.wanfangdata.com.cn/Thesis/D272029 [19] Fu P F, Lin X F, Li G, et al. Degradation of thiol collectors using ozone at a low dosage:Kinetics, mineralization, ozone utilization, and changes of biodegradability and water quality parameters[J]. Minerals, 2018, 8:477. doi: 10.3390/min8110477
[20] 孙贤波, 赵庆详, 曹国民, 等.高级氧化法的特性及应用[J].中国给水排水, 2002, 18(5):33-35. doi: 10.3321/j.issn:1000-4602.2002.05.010
[21] Camel V, Bermond A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research, 1998, 32(11):3208-3222. doi: 10.1016/S0043-1354(98)00130-4
[22] Hoigné J, Bader H. Rate constants of reaction of ozone with organic compounds[J]. Water Research, 1983, 17(2):173-185. doi: 10.1016/0043-1354(83)90098-2
[23] 刘玥.硅酸盐催化剂制备及其催化臭氧氧化水中氯代硝基苯[D].哈尔滨: 哈尔滨工业大学, 2011.
http://d.wanfangdata.com.cn/Thesis/D263810 [24] 翟旭.纳米ZnO催化臭氧氧化去除饮用水中二氯乙酸的效能与机理[D].哈尔滨: 哈尔滨工业大学, 2010.
http://d.wanfangdata.com.cn/Thesis/D269227 [25] 申亚东.蒙脱土基改性催化剂的制备及催化臭氧化效能研究[D].哈尔滨: 哈尔滨工业大学, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-10213-1017863160.htm -