-
摘要: 简要介绍了目前我国尾矿资源的现状,论述了在当前经济发展形式和环保要求下,尾矿资源综合利用的必要性。列举大量实例和数据,简述了尾矿综合利用途径和发展现状,并指出尾矿综合利用是实现矿产行业可持续发展的必然选择。进一步开展尾矿综合利用的研究,将尾矿的综合利用同环境治理结合起来,既能取得良好的经济效益,又能产生显著的社会效益。Abstract: The paper introduces status of tailings resource briefly, and discusses the necessities of comprehensive utilization of tailings in the current economic development situation and environmental protection in China. Based on a large number of examples and data, the approaches of comprehensive utilization and current development status are described. The significant choice for mineral industry to achieve sustainable development is comprehensive utilization of tailings. Further research on the comprehensive utilization of tailings, combining the comprehensive utilization of tailings with environmental treatment, can not only realize good economic benefit, but also produce significant social benefit.
-
Key words:
- tailings /
- comprehensive utilization /
- building materials /
- tailings backfill
-
-
[1] 张淑会, 薛向欣, 刘然, 等.尾矿综合利用现状及其展望[J].矿冶工程, 2005(3):44-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc200503013
[2] 常亮.用铁尾矿和镁尾矿制备M2S隔热砖的工艺研究[D].鞍山: 辽宁科技大学, 2008.
http://d.wanfangdata.com.cn/thesis/Y1242588 [3] 王雪峰, 朱欣然, 李为, 等.全国矿产资源节约与综合利用报告[M].北京:地质出版社.2018:21-23.
[4] Matschullat J, Borba RP, Deschamps E, et al. Human and environmental contamination in the Iron Quadrangle, Brazil[J]. Applied Geochemistry:Journal of the International Association of Geochemistry and Cosmochemistry, 2000, 15(2):181-190. http://www.onacademic.com/detail/journal_1000035514730910_6e30.html
[5] LICSKó I, LOIS L, SZEBéNYI G. Tailings as a source of environmental pollution[J]. Water Science and Technology, 1999, 39(10):333-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d327a96d0333c9c7ed18d0981719a467
[6] 彭觥, 汪贻水.中国实用矿山地质学(下册)[M].北京:冶金工业出版社, 2010:5.
[7] 史利芳, 潘利祥, 郭炜, 等.尾矿综合利用及实例[C]//中国冶金矿山企业协会.第六届全国尾矿库安全运行与尾矿综合利用技术高峰论坛论文集.黄山: 中国冶金矿山企业协会, 2013: 137-141, 150.
[8] 陈益民.尾矿综合利用现状和存在的问题[J].有色冶金设计与研究, 2018, 39(6):123-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysyjsjyyj201806038
[9] 徐名特, 姜得男, 阎赞, 等.某金矿氰化尾渣浮选试验研究[J].矿业研究与开发, 2015, 35(11):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kyyjykf201511014
[10] 向鹏成, 谢英亮.尾矿利用的经济性潜力分析[J].矿产保护与利用, 2002(1):50-54. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=77400080-5f37-4164-851b-ea9212b7ca43
[11] YANG D, ZENG D H, ZHANG J, et al. Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China[J]. Land Degradation & Development, 2012, 23(3):256-262. http://cn.bing.com/academic/profile?id=fda69c17e63ae66615e2223eab3a2bb5&encoded=0&v=paper_preview&mkt=zh-cn
[12] 沈立义.大红山铁矿400万t/a选矿厂尾矿再选试验及初步实践[J].金属矿山, 2008(5):143-145, 148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks200805039
[13] 周咏, 田艳红.研山铁矿综合尾矿再选试验及生产实践[J].金属矿山, 2019(5):188-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201905030
[14] 张宝丽.某黄金矿山尾矿综合利用研究[J].有色金属(选矿部分), 2000(1):41-43, 22. http://d.wanfangdata.com.cn/periodical/ysjs-xk200001012
[15] 袁致涛, 马玉新, 李庚辉, 等.某铁尾矿再回收铁矿物试验研究[J].矿冶工程, 2016, 36(4):37-40, 44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201604010
[16] 唐志东, 韩跃新, 李艳军, 等.袁家村铁矿尾矿再选试验研究[J].矿产综合利用, 2018(1):106-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201801023
[17] LI C, SUN H, BAI J, et al. Innovative methodology for comprehensive utilization of iron ore tailings:Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials, 2010, 174(1):71-77. http://www.ncbi.nlm.nih.gov/pubmed/19782467
[18] ZHAI J, WANG H, CHEN P, et al. Recycling of iron and titanium resources from early tailings:From fundamental work to industrial application[J]. Chemosphere, 2020, 242:125178. http://cn.bing.com/academic/profile?id=8ec43ecdd4e897df095f203869c602be&encoded=0&v=paper_preview&mkt=zh-cn
[19] TANG Z, GAO P, LI Y, et al. Recovery of iron from hazardous tailings using fluidized roasting coupling technology[J]. Powder Technology, 2020, 361:591-599. http://cn.bing.com/academic/profile?id=e0c67a51c57a807e94621c9a34733842&encoded=0&v=paper_preview&mkt=zh-cn
[20] SUN Y, ZHANG X, HAN Y, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting:A pilot-scale study[J]. Powder Technology, 2020, 361:571-580. http://www.sciencedirect.com/science/article/pii/S003259101931037X
[21] 杨慧芬, 李彩红, 王传龙, 等.氧化酸浸-酒石酸络合法从铅渣选铁尾矿中回收锑铜[J].金属矿山, 2015(9):175-180. http://www.cqvip.com/QK/90084X/201509/665984198.html
[22] 郑强, 边雪, 吴文远.盐酸浸出白云鄂博选铁尾矿中经钙化焙烧的稀土[J].金属矿山, 2017(5):197-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201705039
[23] CENG C, WANG H-J, HU W-T, et al. Recovery of iron and copper from copper tailings by coal-based direct reduction and magnetic separation[J]. Journal of Iron and Steel Research, International, 2017, 24(10):991-997. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyjxb-e201710003
[24] 焦文亚, 赵义, 邵辉, 等.湖北某铜尾矿再选回收铜硫试验[J].金属矿山, 2016(7):179-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201607034
[25] LYU C, WANG Y, QIAN P, et al. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate[J]. Chinese Journal of Chemical Engineering, 2018, 26(9):1814-1821. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjce201809005
[26] CHEN T, LEI C, YAN B, et al. Metal recovery from the copper sulfide tailing with leaching and fractional precipitation technology[J]. Hydrometallurgy, 2014, 147-148:178-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a0621653a45b25f145ff737cd511945
[27] YIN S, WANG L, WU A, et al. Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria[J]. Journal of Cleaner Production, 2018, 189:746-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2aac785478228e86e210dc8dd440844
[28] 王显军.某矿山尾矿资源综合利用[J].中国金属通报, 2018(12):42-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjstb201812024
[29] 刘超, 陈志强, 罗传胜, 等.某铅锌尾矿回收重晶石选矿新工艺研究[J].化工矿物与加工, 2017, 46(11):11-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkwyjg201711004
[30] 程瑜, 石富军, 徐飞, 等.铅锌尾矿综合回收锌试验研究[J].中国资源综合利用, 2016, 34(2):36-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzyzhly201602018
[31] LEI C, YAN B, CHEN T, et al. Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation[J]. Journal of Cleaner Production, 2017, 158:73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8f39a679238665db456613d3cefe56b
[32] KHALIL A, ARGANE R, BENZAAZOUA M, et al. Pb-Zn mine tailings reprocessing using centrifugal dense media separation[J]. Minerals Engineering, 2019, 131:28-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f916e9a1712db4c1d42a5f57246cdb6e
[33] LIU Y, ZHANG Y, CHEN F, et al. The alkaline leaching of molybdenite flotation tailings associated with galena[J]. Hydrometallurgy, 2012, 129-130:30-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3488c4f13648b2b4d486350fed6ec4c3
[34] LEI Y, ZHANG G, AI C, et al. Bioleaching of sphalerite by the native mesophilic iron-oxidizing bacteria from a lead-zinc tailing[J]. Procedia Environmental Sciences, 2016, 31:554-559. http://www.sciencedirect.com/science/article/pii/S1878029616000864
[35] 张悦, 林海, 董颖博, 等.包钢稀土尾矿中稀土矿物的浮选再回收[J].金属矿山, 2016(3):176-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201603038
[36] 邓善芝, 邓杰, 熊文良, 等.某稀土尾矿综合利用技术研究[J].稀土, 2018, 39(4):77-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201804012
[37] 严伟平, 曾小波, 杨耀辉.四川某稀土尾矿综合回收利用的选矿试验研究[J].有色金属(选矿部分), 2019(4):9-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk201904003
[38] LAN X, GAO J, LI Y, et al. A green method of respectively recovering rare earths (Ce, La, Pr, Nd) from rare-earth tailings under super-gravity[J]. Journal of Hazardous Materials, 2019, 367:473-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5874113b84ad67512f10099a68ba9dea
[39] ZHENG Q, BIAN X, WU W-Y. Iron recovery and rare earths enrichment from Bayan Obo tailings using Coal-Ca(OH)2-NaOH roasting followed by magnetic separation[J]. Journal of Iron and Steel Research, International, 2017, 24(2):147-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyjxb-e201702004
[40] 罗立群, 涂序, 周鹏飞.湖泥陶粒的制备及重金属固化研究[J].硅酸盐通报, 2019, 38(11):3397-3402, 3408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsytb201911004
[41] ZHANG Y, SHEN W, WU M, et al. Experimental study on the utilization of copper tailing as micronized sand to prepare high performance concrete[J]. Construction and Building Materials, 2020, 244:118312. http://www.sciencedirect.com/science/article/pii/S0950061820303172
[42] WANG X, YU R, SHUI Z, et al. Development of a novel cleaner construction product:Ultra-high performance concrete incorporating lead-zinc tailings[J]. Journal of Cleaner Production, 2018, 196:172-182. http://cn.bing.com/academic/profile?id=649754baa59f2bb0b7e7ea5f0d1be549&encoded=0&v=paper_preview&mkt=zh-cn
[43] GUO Z, FENG Q, WANG W, et al. Study on flotation tailings of kaolinite-type pyrite when used as cement admixture and concrete admixture[J]. Procedia Environmental Sciences, 2016, 31:644-652. http://dx.doi.org/10.1016/j.proenv.2016.02.118
[44] WANG C, CHEN X-X, DANG C, et al. Preparation of ceramsite from C&D waste and baiyunebo tailings[J]. Procedia Environmental Sciences, 2016, 31:211-217.
[45] LIU T, TANG Y, LI Z, et al. Red mud and fly ash incorporation for lightweight foamed ceramics using lead-zinc mine tailings as foaming agent[J]. Materials Letters, 2016, 183:362-364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9011116c55a7111a84d5a37742b26851
[46] XI C, ZHOU J, ZHENG F, et al. Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances[J]. Journal of Environmental Management, 2020, 261:110197. http://www.sciencedirect.com/science/article/pii/S0301479720301328
[47] WEI B, ZHANG Y, BAO S. Preparation of geopolymers from vanadium tailings by mechanical activation[J]. Construction and Building Materials, 2017, 145:236-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=027ad6d1d6db0c1f14f55edb731b8ba4
[48] DUAN P, YAN C, ZHOU W, et al. Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(Ⅱ) from wastewater[J]. Ceramics International, 2016, 42(12):13507-13518. http://www.researchgate.net/publication/303511347_Development_of_fly_ash_and_iron_ore_tailing_based_porous_geopolymer_for_removal_of_CuII_from_wastewater
[49] JIAO X, ZHANG Y, CHEN T. Thermal stability of a silica-rich vanadium tailing based geopolymer[J]. Construction and Building Materials, 2013, 38:43-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f11e2c69c414aa7dca9fd9e99a0e834
[50] YANG C, CUI C, QIN J, et al. Characteristics of the fired bricks with low-silicon iron tailings[J]. Construction and Building Materials, 2014, 70:36-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e01f3e786cd756ae5d31288da986245a
[51] LI R, ZHOU Y, LI C, et al. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity[J]. Construction and Building Materials, 2019, 213:43-50. http://www.sciencedirect.com/science/article/pii/S0950061819308840
[52] SHI J, HE F, YE C, et al. Preparation and characterization of CaO-Al2O3-SiO2 glass-ceramics from molybdenum tailings[J]. Materials Chemistry and Physics, 2017, 197:57-64.
[53] ZHENG W M, SUN H J, PENG T J, et al. Novel preparation of foamed glass-ceramics from asbestos tailings and waste glass by self-expansion in high temperature[J]. Journal of Non-Crystalline Solids, 2020, 529:119767. http://www.sciencedirect.com/science/article/pii/S0022309319306374
[54] CHEN J, YAN B, LI H, et al. Vitrification of blast furnace slag and fluorite tailings for giving diopside-fluorapatite glass-ceramics[J]. Materials Letters, 2018, 218:309-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed6a3ddd624cb5f0e17f17aeadba09b2
[55] GAO H, LIU H, LIAO L, et al. A novel inorganic thermal insulation material utilizing perlite tailings[J]. Energy and Buildings, 2019, 190:25-33. http://www.sciencedirect.com/science/article/pii/S0378778818335667
[56] 狄燕清, 崔孝炜, 庞华, 等.掺尾矿新型轻质建筑保温材料的制备[J].混凝土与水泥制品, 2016(6):66-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hntysnzp201606016
[57] 牛艳宁, 孙小卫, 冯立新, 等.尾矿综合利用产业化现状及前景展望[C]//国家金属矿产资源综合利用工程技术研究中心.2013'全国矿产资源和产业"三废"的综合利用学术研讨会论文集.南宁: 国家金属矿产资源综合利用工程技术研究中心, 2013: 3.
[58] 周芸, 李永梅, 张仁礼, 等.生物炭、木醋液对磷尾矿堆肥进程及磷活化的影响[J].云南农业大学学报(自然科学), 2019, 34(3):509-515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynnydxxb201903021
[59] MU J, HU Z, HUANG L, et al. Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils[J]. Environmental Pollution, 2020, 257:113565. http://www.sciencedirect.com/science/article/pii/S0269749119315556
[60] LEI M, TANG L, DU H, et al. Safety assessment and application of iron and manganese ore tailings for the remediation of As-contaminated soil[J]. Process Safety and Environmental Protection, 2019, 125:334-341. http://www.sciencedirect.com/science/article/pii/S0957582019300825
[61] 朱岩.我国矿山土地复垦现状及对策研究[J].国土资源, 2019(6):48-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzy201906021
[62] 赵良庆, 潘利祥, 史利芳, 等.矿山复垦及存在的问题[C]//中国环境科学学会.中国环境科学学会2013年学术年会论文集.昆明: 中国环境科学学会, 2013: 6175-6179.
[63] 甘德清, 杨福海, 王树国.唐山中小型铁矿尾矿复垦试验[J].金属矿山, 1996(12):42-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600298111
[64] LI X, ZHANG X, WANG X, et al. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments[J]. Ecotoxicology and Environmental Safety, 2019, 180:517-525. http://cn.bing.com/academic/profile?id=25b8e41b448352daf68c19b2846d12bd&encoded=0&v=paper_preview&mkt=zh-cn
[65] LIU B, WANG S, WANG J, et al. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris[J]. Science of The Total Environment, 2020, 719:137475. http://www.researchgate.net/publication/339394434_The_great_potential_for_phytoremediation_of_abandoned_tailings_pond_using_ectomycorrhizal_Pinus_sylvestris
[66] ZHANG X, LI M, YANG H, et al. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals[J]. Journal of Environmental Management, 2018, 223:132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79d99aa7466a685a5c90c60e08346ec0
[67] LI X, WANG X, CHEN Y, et al. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment[J]. Ecotoxicology and Environmental Safety, 2019, 168:1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=200139b26c72a57ac6e0948b790388ac
[68] 崔旭, 宋少先, 夏令, 等.尾矿减量化关键技术研究及应用[J].现代矿业, 2019, 35(7):161-165, 182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201907043
[69] CHU C, DENG Y, ZHOU A, et al. Backfilling performance of mixtures of dredged river sediment and iron tailing slag stabilized by calcium carbide slag in mine goaf[J]. Construction and Building Materials, 2018, 189:849-856. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5257d64241bbf2ef7d5b10d445340315
[70] LIU B, GAO Y T, JIN A B, et al. Dynamic characteristics of superfine tailings-blast furnace slag backfill featuring filling surface[J]. Construction and Building Materials, 2020, 242:118173. http://www.sciencedirect.com/science/article/pii/S0950061820301781
[71] WAN R, KONG D, KANG J, et al. The experimental study on thermal conductivity of backfill material of ground source heat pump based on iron tailings[J]. Energy and Buildings, 2018, 174:1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cfe4a5f8e5bb9e09d4a901fb2e132c05
[72] YIN S, SHAO Y, WU A, et al. Expansion and strength properties of cemented backfill using sulphidic mill tailings[J]. Construction and Building Materials, 2018, 165:138-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d4c7da8637cdb9ed5d6b26e13ffd3d9
[73] ZHENG J, SUN X, GUO L, et al. Strength and hydration products of cemented paste backfill from sulphide-rich tailings using reactive MgO-activated slag as a binder[J]. Construction and Building Materials, 2019, 203:111-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=09972d2805f589db14b0ff6f48951249
-
计量
- 文章访问数: 4562
- PDF下载数: 174
- 施引文献: 0