-
摘要:
对石墨烯的结构、性能以及常用的制备方法予以介绍,总结了石墨烯防腐涂料的制备方法和影响因素,同时对石墨烯防腐涂料的防腐机理加以概述,提出了石墨烯防腐涂料未来发展的瓶颈问题。
Abstract:In this paper, structure, properties and common preparation methods of the graphene were briefly introduced. The preparation methods and influencing factors of graphene modified anti-corrosion coatings were summarized. Meanwhile, an overview of the anti-corrosion mechanism of graphene modified anti-corrosion coatings was provided. Finally, the bottleneck problem of the future development of graphene anticorrosive coatings was raised.
-
Key words:
- graphene /
- anticorrosive coatings /
- characterization test /
- antiseptic mechanism
-
-
图 1 石墨烯的结构和形貌:(a)石墨烯的起伏;(b)锯齿型边缘GNR和扶手椅型边缘GNR [10]
Figure 1.
图 2 石墨烯的电化学剥离过程示意图[44]
Figure 2.
图 3 铝合金(AA)的聚合物(PVB)-石墨烯(G)复合防腐涂层的制备过程图[47]
Figure 3.
图 4 不同样品的平均摩擦系数曲线图[61]
Figure 4.
图 5 样品磨损痕迹的显微照片[61]:(a)纯环氧树脂,(b)P2BA0.5%,(c)P2BA0.5%-G0.5%和(d)P2BA0.5%-G0.5%
Figure 5.
图 6 磁性石墨烯在均匀磁场中的取向[65]
Figure 6.
图 7 纯环氧树脂涂层、GO-a / EP复合涂层和GO-c / EP复合涂层的防腐机理对比[72]
Figure 7.
图 9 石墨烯的导电机理[29]
Figure 9.
图 10 取向(MG / Zn-MF)和未取向(MF / Zn)磁性石墨烯影响富锌涂层中锌类型的机理示意图[79]
Figure 10.
-
[1] SHENG Q, SILVEIRA K C D, TIAN W, et al. Simultaneous hydrate and corrosion inhibition with modified poly (vinyl caprolactam) polymers[J]. Energy Fuels, 2017, 31:6724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5396b155148a7f78c3899923da563bca
[2] 赵洪涛, 陆卫中, 李京, 等.无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为[J].中国腐蚀与防护学报, 2016, 36(4):295-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfsyfhxb201604002
[3] 彭欣, 李海晏, 孔祥峰, 等.纳米复合带锈涂装船用环氧防腐底涂料制备研究[J].新型建筑材料, 2016, 43(3):33-35. http://www.cnki.com.cn/Article/CJFDTotal-XXJZ201603012.htm
[4] 袁晓艳, 程原, 李婧.无溶剂环氧重防腐涂料的研究[J].现代涂料与涂装, 2014, 1(4):1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdtlytz201404001
[5] CHEN C, QIU S, CUI M. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene[J]. Carbon, 2016, 114:356-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17727ccd920cbbbf18a601d6f18e1ace
[6] LLI, S RYU, MR TOMASIK, et al. Graphenc oxidation:thickness dcpendent ctching and strong chemical doping[J]. Nano Letters, 2008, 8:1965-1970. https://pubs.acs.org/doi/10.1021/nl0808684
[7] Y.S. DEDKOV, M. FONIN, CLAUBSCHAT, et al. A possible source of spin-polarized clectrons:the inert graphene/Ni(Ⅲ) system[J]. Applicd Physics Lctters, 2007, 92(5):166402-166405.
[8] 赵书华, 陈玉, 王树立, 等.石墨烯防腐涂料研究进展[J].常州大学学报(自然科学版), 2017, 29(2):23. http://www.cnki.com.cn/Article/CJFDTOTAL-JSSY201702005.htm
[9] JIAN L, JI H W, SHAO G W, et al. Research Progress in Graphene for Anticorrosive Coatings[J]. Paint & Coatings Industry, 2017, 47(11):69. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TLGY201711012.htm
[10] 钟雨嘉, 朱宏伟.石墨烯的结构、性能及潜在应用[J].物理, 2018, 47(11):704-714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wl201811003
[11] 朱科.丙烯酸酯-环氧树脂核壳乳液及石墨烯复合涂料的制备与防腐性能研究[D].西安: 陕西科技大学, 2018.
https://www.ixueshu.com/document/91c3f56eaf3c7f54695554d56b9596da318947a18e7f9386.html [12] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131):60-63. http://cn.bing.com/academic/profile?id=00bd47bd0092898532b7cfbe7dc9717f&encoded=0&v=paper_preview&mkt=zh-cn
[13] XU K, CAO P, HEATH J R. Scanning tunneling microscopy characterization of the electrical propertics of wrinkles in exfoliated graphene monolayers[J]. Nano Lctters, 2012, 9(12):4446-4451. https://pubs.acs.org/doi/abs/10.1021/nl902729p%40proofing
[14] LI X, WANG X, ZHANG L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af4dfdf6b6675dc1ccda0836a4bfad26
[15] RAFIEE M A. Graphene-based composite materials[J]. Nature, 2011, 442(2):282-6. http://cn.bing.com/academic/profile?id=b20eb75f1a6d5a6f0a7693fe2fd6a8a0&encoded=0&v=paper_preview&mkt=zh-cn
[16] MAGDA, GÁBOR ZSOLT, JIN X, et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons[J]. Nature, 2014, 514(7524):608-611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac24dff026e974f5256db1188d9356ae
[17] WANG Y, HUANG Y, SONG Y, et al. Room temperature ferromagnetism of graphene[J]. Nano Letters, 2009, 9(1):220-224. http://cn.bing.com/academic/profile?id=a2efec9827628cb3ffc18b3f39f4fc0e&encoded=0&v=paper_preview&mkt=zh-cn
[18] HUANG P Y, RUIZ-VARGAS C S, VAN D Z A M, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J]. Nature, 2011, 469(7330):389-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68f779a2558e02f280bac016fe813796
[19] TSEN A W, BROWN L, LEVENDORF M P, et al. Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene[J]. Science, 2012, 336(6085):1143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57cf76095ac776d6d8a8b2212ac19309
[20] HASHIMOTO A, SUENAGA K, GLOTER A, et al. Direct evidence for atomic defects in graphene layers. Nature[J]. Nature, 2004, 430(7002):870-873. http://cn.bing.com/academic/profile?id=c908ffc34057b64616c25f12b2dcddb3&encoded=0&v=paper_preview&mkt=zh-cn
[21] WARNER J H, MARGINE E R, MUKAI M, et al. Dislocation-driven deformations in graphene[J]. Science, 2012, 337(6091):209-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d19f64120544fde68f2e61f1a42711af
[22] BUTZ B, DOLLE C, NIEKIEL F, et al. Dislocations in bilayer graphene[J]. Nature, 2014, 505(7484):533-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64df71008cab3831ef0ae31424eb6bd0
[23] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699):43-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a6a6e72127bc002431b74fc1c0dbdb7
[24] CHEN J H, JANG C, XIAO S D, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3(3):206-209. https://www.nature.com/articles/nnano.2008.58
[25] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907. http://cn.bing.com/academic/profile?id=28a010c1f5bd5e256df3aa9d0b5b59bc&encoded=0&v=paper_preview&mkt=zh-cn
[26] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11b9413d19ebf11f6fb62ec5e06397f3
[27] NOVOSELOV KS, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000425365
[28] 唐多昌, 李晓红, 袁春华, 等.机械剥离法制备高质量石墨烯的初步研究[J].西南科技大学学报, 2010, 25(3):16-18, 59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xngxyxb201003004
[29] 李爽, 张双红, 杨波, 等.石墨烯防腐涂料研究进展[J].腐蚀科学与防护技术, 2019, 31(4). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201904013
[30] 李强.石墨烯基防腐涂料的研究进展[J].上海化工, 2019(7):32-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhg201907011
[31] DENG S, QI XD, ZHU Y L, et al. A facile way to large-scale production of few-layered graphene via, planetary ball mill[J]. Chinese Journal of Polymer Science, 2016, 34(10):1270-1280. http://cn.bing.com/academic/profile?id=d374bdd01a8eb067af118c447f2d3f3d&encoded=0&v=paper_preview&mkt=zh-cn
[32] GUNASEKARAN R, KALIDOSS J, DAS S K, et al. Shear-force-dominated dual-drive planetary ball milling for scalable production of graphene and its electro-catalytic application with Pd nanostructures[J]. Rsc Advances, 2016, 6(24):20067-20073. https://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra24810h#!
[33] HUMMERS WS, OFFEMAN R E. Preparation of graphite oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
[34] STANKOVICH S, DIKIN DA, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graph ite oxide[J]. Carbon, 2007, 45(7):1558-1565. http://utw10193.utweb.utexas.edu/Archive/RuoffsPDFs/160.pdf
[35] MCALLISTER MJ, LI J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18):4396-4404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef55516eefda9387ceaf3907379d4915
[36] PAREDES J I, VILLAR-RODILS, MARTINEZALONSO A, et al. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008, 24(19):10560-10564. http://cn.bing.com/academic/profile?id=26c7aa9cc0540a062b055d12a6cad7f2&encoded=0&v=paper_preview&mkt=zh-cn
[37] 杨晓丽, 孟军华.化学气相沉积法可控制备石墨烯薄膜和单晶畴[J].微纳电子技术, 2018, 55(1):63-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wndzjs201801011
[38] LI X S, CAI W W, AN J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d2af75171b3aed7805b75ce2ec5880c
[39] GAO L B, REN W C, XU H L, et al. Repeated growth and bub-bling transfer of graphene with millimetre-size single-erystal grains using platinum[J]. Nature Communications, 2012, 3(2):6991-6997. http://www.nature.com/doifinder/10.1038/ncomms1702
[40] SIFT, ZHANG X W, LIU X, et al. Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition[J]. Vacuum, 2012, 86(12):1867-1870. http://cn.bing.com/academic/profile?id=3726d441efae25e195147740ffc0a6e0&encoded=0&v=paper_preview&mkt=zh-cn
[41] GENG D C, WU B, GUO Y L, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface[J]. Proceedings of the National Academy of Sciences, 2012, 109(21):7992-7996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6a652876f9784aaa009baa5369d7269
[42] HAO Y F, BHARATHI M S, WANG L, et al. The role of surface oxygen in the growth of large single-erystal graphene on copper[J]. Science, 2013, 342(6159):720-723. https://science.sciencemag.org/content/sci/342/6159/720.full.pdf
[43] XU X Z, ZANG Z H, QIU L, et al. Ultrafast growth of singlecrystal graphene assisted by a continuous oxygen supply[J]. Nature Nanotechnology, 2016, 11(11):930-935. https://pubmed.ncbi.nlm.nih.gov/27501317/
[44] SNEHA D, SUNNY R, BHATTACHARYYA A R, et al. Factors affecting barrier performance of composite anti-corrosion coatings prepared by using electrochemically exfoliated few-layer graphene as filler[J]. Composites Part B:Engineering, 2018, 155:1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3033cebea9e95035b5d51a085a73dcec
[45] PARVEZ K, WU ZS, LI R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. J Am Chem Soc, 2014, 136:6083-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92d950ba6d0967c009291c7c413d428b
[46] I WLASNY, P DABROWSKI, M ROGALA, et al. Role of graphene defects in corrosion of graphene-coated Cu(Ⅲ) surface[J]. Applied Physics Letters, 2013, 102(11):111601-111605. https://aip.scitation.org/doi/10.1063/1.4795861
[47] FENG Y, CAMILLI L, WANG T, et al. Complete long-term corrosion protection with chemical vapor deposited graphene[J]. Carbon, 2018, 132:78-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08eb4ab1b1565a12991a84769e739046
[48] LIU S, PAN T J, WANG R F, et al. Anti-corrosion and conductivity of the electrodeposited graphene/polypyrrole composite coating for metallic bipolar plates[J]. Progress in Organic Coatings, 2019, 136:105237. http://cn.bing.com/academic/profile?id=84fd859e7aaa68645a0e4e2bcdd5d0c6&encoded=0&v=paper_preview&mkt=zh-cn
[49] CHEN J, LI C, CAO W, et al. Conductive and high anticorrosive rGO-modified copper foil prepared by electrocoagulation and chemical reduction[J]. Ionics, 2019, 25(6):2935-2944. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d86b4bef0187c6522332d97c7997a95b
[50] QUEZADA-RENTERÍA, J.A, CHÁZARO-RUIZ, et al. Synthesis of reduced graphene oxide (rGO) films onto carbon steel by cathodic electrophoretic deposition:Anticorrosive coating[J]. Carbon, 2017, 122:266-275.
[51] ZHOU M, WANG Y, ZHAI Y, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films[J], Chem.A Eur.J, 2009, 15:6116-6120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb99a8a4836045f2e837ec75a85753e4
[52] MOHSIN ALI RAZA, ASAD ALIA, FAIZAN ALI GHAURIA, et al. Electrochemical behavior of graphene coatings deposited on copper metal by electrophoretic deposition and chemical vapor deposition[J]. Surface & Coatings Technology, 2017, 332:112-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffa0e70952332fb89eac43341a75b4d3
[53] LIU S, GU L, ZHAO H C, et al. Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings[J]. Journal of Materials Science & Technology, 2016, 32(5):425-431. https://www.researchgate.net/publication/288039694_Corrosion_Resistance_of_Graphene-Reinforced_Waterborne_Epoxy_Coatings
[54] POONEH HAGHDADEH, MEHDI GHAFFARI, BAHRAM RAMEZANZADEH, et al. Polyurethane coatings reinforced with 3-(triethoxysilyl)propyl isocyanate functionalized graphene oxide nanosheets:Mechanical and anti-corrosion properties[J]. Progress in Organic Coatings, 2019, 136:105, 243. https://www.researchgate.net/publication/334665021_Polyurethane_coatings_reinforced_with_3-triethoxysilylpropyl_isocyanate_functionalized_graphene_oxide_nanosheets_Mechanical_and_anti-corrosion_properties
[55] DING R, ZHENG Y, YU H, et al. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings[J]. Journal of Alloys and Compounds, 2018, 748:481-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1909ee5b908780373c3512c776df337
[56] CHANG K C, JI W F, LI C W, et al. The effect of varying carboxylic group content in reduced graphene oxides on the anticorrosive properties of PMMA/graphene composites[J], Express Polym. Lett, 2014, 8:908-919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003694815
[57] YANG H, SHAN C, LI F, et al. Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction[J], 1. Mater. Chem, 2009, 19:8856-8860. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e3f58fc05ea7abe79b3b05a09141ee7e
[58] TANG X, ZHOU Y, PENG M. Green preparation of epoxy/graphene oxide nanocomposites using a glycidylamine epoxy resin as the surface modifier and phase transfer agent of graphene oxide[J]. ACS Appl. Mater. Interfaces, 2015, 8:1854-1866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=787980374152b963434b0913ba5469da
[59] XIA W, XUE H, WANG J, et al. Functionalized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites[J]. Carbon, 2016, 101:315-323. https://www.sciencedirect.com/science/article/pii/S0008622316300975
[60] LU H, ZHANG S, LI W, et al. Synthesis of graphene oxide-based sulfonated oligo anilines coatings for synergistically enhanced corrosion protection in 3.5% NaCl solution[J]. ACS Appl. Mater Interfaces, 4034-4043.
https://www.researchgate.net/publication/312211944_Synthesis_of_Graphene_Oxide-Based_Sulfonated_Oligoanilines_Coatings_for_Synergistically_Enhanced_Corrosion_Protection_in_35_NaCl_Solution [61] CHENG C, QIU S, CUI M, et al. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene[J]. Carbon, 2017, 114:356-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17727ccd920cbbbf18a601d6f18e1ace
[62] WEI Y, WANG J, JIA X, et al. Polyaniline as corrosion protection coatings on cold rolled steel[J]. Polymer, 1995, 36(23):4535-4537. http://cn.bing.com/academic/profile?id=548175619c85ac6e6b38fee0b455cbe3&encoded=0&v=paper_preview&mkt=zh-cn
[63] WEI Y, YANG C, DING T. ChemInform Abstract:A One-Step Method to Synthesize N, N'-Bis(4'-aminophenyl)-1, 4-quinonenediimine and Its Derivatives[J]. Cheminform, 2010, 27(22):731-734. https://www.researchgate.net/publication/250559798_ChemInform_Abstract_A_One-Step_Method_to_Synthesize_NN'Bis4'-aminophenyl-14-_quinonenediimine_and_Its_Derivatives
[64] HSIU-YING HUANG, TSAO-CHENG HUANG, TZU-CHUN YEH, et al. Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties[J]. Polymer, 2011, 52(11):2391-2400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac6b554f03e8992862831a3b2ea779a7
[65] DING R, CHEN S, LV J, et al. Study on graphene modified organic anti-corrosion coatings:A comprehensive review[J]. Journal of Alloys and Compounds, 2019, 806:611-635. http://cn.bing.com/academic/profile?id=c67f3d14a5ef98eeec8defda757e24f1&encoded=0&v=paper_preview&mkt=zh-cn
[66] DONG R Y, CAO P, CAO G X, et al. DC electric field induced orientation of a graphene in water, Acta Phys. Sin, 2017, 66:218-225.
[67] ZHOU J, WANG Q, SUN Q, et al. Ferromagnetism in semihydrogenated graphene sheet[J]. Nano Lett, 2009, 9:3867. http://cn.bing.com/academic/profile?id=47d558d234d3a7c065bd6ef641f60888&encoded=0&v=paper_preview&mkt=zh-cn
[68] POURHASHEM S, VAEZI M R, RASHIDI A, et al. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel[J]. Corrosion Science, 2017, 115:78-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45d739ad6b0396539337e93fab2210e7
[69] POURHASHEM S, RASHIDI A, VAEZI M R, et al. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide[J]. Surface and Coatings Technology, 2017, 317:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4a8bc0ad2ea00bb92b990e52dec3ee4
[70] GONG L X, PEI Y B, HAN Q Y, et al. Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites, Compos. Sci. Technol, 2016, 134:144-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c24b514a70ca5e627e1a44f2936c3e8
[71] TANG L C, WAN Y J, YAN D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon, 2013, 60:16-27. http://cn.bing.com/academic/profile?id=1a70bb50bfc1bfcc23b1002f7e79df75&encoded=0&v=paper_preview&mkt=zh-cn
[72] JIANG F W, ZHAO W J, WU Y M, et al. Anti-corrosion behaviors of epoxy composite coatings enhanced via graphene oxide with different aspect ratios[J]. Progress in Organic Coatings, 2019, 127:70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=604918560d423a4b952b9d1b05f06ee1
[73] S. POURHASHEM, M.R. VAEZI, A. RASHIDI, et al. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel[J]. Corros. Sci, 2016, 115:78-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45d739ad6b0396539337e93fab2210e7
[74] CHEN S S, BROWN L, LEVENDORF M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2011, 5:1321. http://cn.bing.com/academic/profile?id=fd2034413c2e477e02d7e15fa7dc226e&encoded=0&v=paper_preview&mkt=zh-cn
[75] CHI J H, CHEN S, CHEN X F, et al. Research progress and application of graphene anticorrosive coatings[J]. Equip Environ Eng, 2018, 15(5):56. http://en.cnki.com.cn/Article_en/CJFDTotal-JSCX201805012.htm
[76] FAYYAD E M, SADASIVUNI K K, PONNAMMA D, et al. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel[J]. Carbohydrate Polymers, 2016, 151:871-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eee54b0c96dcabe9790c42d1c1c08fe0
[77] DING R, ZHENG Y, YU H, et al. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings, J. Alloy. Comp, 2018, 748:81-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1909ee5b908780373c3512c776df337
[78] DING R, WANG X, JIANG J, et al. Study on evolution of coating state and role of graphene in graphene-modified low-zinc waterborne epoxy anticorrosion coating by electrochemical impedance spectroscopy[J]. Journal of Materials Engineering and Performance, 2017, 26:3319-3335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=681bbafca38be55bbd03a97a0916bfc3
[79] DING R, CHEN S, ZHOU N, et al. The diffusion-dynamical and electrochemical effect mechanism of magnetic graphene oriented arrangement on zinc-rich coatings and the electrody-namics and quantum mechanics mechanism of electron conduction in zinc-rich graphene coatings[J]. J. Alloy. Comp, 2019, 784:756-768.
-