Study on Surface Proton Adsorption Characteristics of Bioleaching Model Microorganism Acidithiobacillus ferrooxidans
-
摘要: 为了探究生物冶金过程及矿山酸性废水中的关键微生物Acidithiobacillus ferrooxidans的表面质子吸附机理,该研究通过酸碱滴定、ProtoFit模拟、电泳迁移率测定及傅里叶变换衰减全反射红外光谱法(ATR-FTIR)系统地揭示不同能源(S0、Fe2+、FeS2)和离子强度(0.001~0.1 mol/L NaNO3)对A.ferrooxidans表面性质的影响及参与质子化/去质子化反应的关键官能团。结果表明:三位点的Donnan壳静电模型能较好地适用于分析A.ferrooxidans的表面酸碱性质;能源和离子强度均影响A.ferrooxidans的表面酸碱性质;在广泛的pH值范围内(2~10),不同能源培养的A.ferrooxidans在不同离子强度下均呈负电性;羧基、磷酸基和酰胺基是质子化/去质子化过程的关键官能团。该研究表明了A.ferrooxidans在吸附重金属方面的重要应用潜力,并对阐明A.ferrooxidans的表面质子吸附机理具有重要意义。
-
关键词:
- A. ferrooxidans /
- 能源 /
- 自动电位滴定 /
- 吸附 /
- 表面性质
Abstract: A. ferrooxidans is an important bioleaching microorganism and the main driving microorganism for the formation of acid mine drainage. To investigate the surface proton adsorption mechanism of A. ferrooxidans, acid-base titration, ProtoFit simulation, electrophoretic mobility determination and Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) were applied to study the effects of different energy sources (S0, Fe2+, FeS2) and ionic strength (0.001 mol/L, 0.01 mol/L and 0.1 mol/L NaNO3) on surface protonation/deprotonation of A. ferrooxidans and the key functional groups involved in the reaction. Results showed that three-site Donnan model could describe the surface complexation of A. ferrooxidans pretty well; The surface properties of A. ferrooxidans were sensitive to both culture energy and ionic strength; A. ferrooxidans was negatively charged in the broad pH range (2-9) studied; The carboxyl group, phosphate group and amide group are the key functional groups in the protonation/deprotonation process. This study indicates important application potential of A. ferrooxidans in the adsorption of heavy metals and has important guiding significance for the elucidation of the surface proton adsorption mechanism of A. ferrooxidans.-
Key words:
- A. ferrooxidans /
- energy source /
- automatic potentiometric titration /
- adsorption /
- surface property
-
-
表 1 不同能源培养的A. ferrooxidans及一些生物表面的表面特性
Table 1. Surface characteristics of A. ferrooxidans and some biological surfaces
Species, (culture) Source pk1 pk2 pk3 C1/(10-4 mol/g) C2/(10-4 mol/g) C3/(10-4 mol/g) Ctotal/(10-4mol/g) A. ferrooxidans, (S0) this paper 3.4 5.6 10.3 3.1 3.7 5.8 12.6 A. ferrooxidans, (Fe2+) this paper 4.2 5.8 9.9 2.1 3.5 5.9 11.5 A. ferrooxidans, (pyrite) this paper 2.4 6.9 10.3 1.3 2.8 7.9 11 A. flavithermus Wightman et al. (2001)[22] 4.94 6.85 7.85 5.33 1.79 1.42 8.54 B. subtilis, Daughney et al. (1998)[23] 4.8 6.49 8.52 6.92 4.44 6.29 17.6 B. subtilis Daughney et al. (1998) 4.12 5.47 8.09 3.27 6.27 2.42 11.96 A. manzaensis, (sulfur) He et al. (2013) 2.9 6.8 7.8 4.3 1.8 2.4 8.5 A. manzaensis, (pyrite) He et al. (2013) 2.4 7 8.2 2.1 1.5 3.4 7 T.thermophilus Ginn and Fein (2008)[24] 3.75 5.73 8.81 11.18 4.47 3.08 18.73 表 2 不同pH值下以S0、Fe2+或FeS2为能源培养的A. ferrooxidans表面主要官能团的比较
Table 2. Comparison on the main functional groups of A. ferrooxidans cultured with S0, Fe2+ or FeS2 at different pH values
A. ferrooxidans (sulfur) A. ferrooxidans (pyrite) A. ferrooxidans (Fe2+) Wave number(cm-1) Functional groups pH=4.04, 5.66, 7.92 pH=2.01, 9.7 pH=2.01, 4.04, 5.66, 7.92 ~1 600-1 640 伯胺N-H面内弯曲 pH=2.01, 4.04, 5.66, 7.97, 9.7 pH=2.01, 4.04, 5.66, 7.92, 9.7 pH=2.01, 4.04, 5.66, 7.92 ~1 540 酰胺Ⅱ类C=O基团的伸缩 pH=4.04, 5.66, 7.92 pH=2.01, 9.7 ~1 455 CH2/CH3弯曲振动(剪式移动) pH=7.92 pH=2.01, 4.04, 5.66, 7.97 ~1 398 羧基对称性伸缩CH2/CH3弯曲振动 pH=4.04, 5.66, 7.92 ~1 240 磷酸盐P=O基团伸缩振动 pH=2.01, 4.04, 5.66, 7.97 pH=2.01, 4.04, 5.66, 9.7 ~1 200-900 PO-2的对称性和非对称性伸缩磷酸盐中的P(OH)2伸缩振动多糖中C-OH、C-O-C、C-C的振动 pH=4.04, 5.66, 7.97 pH=2.01, 4.04, 5.66 PH=2.01, 4.04, 5.66, 7.92 ~1 080 仲醇C-O基团伸缩振动 -
[1] DEVASIA P, NATARAJAN KA.Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces[J].International Journal of Mineral Processing, 2010, 94(3-4):135-139. doi: 10.1016/j.minpro.2010.02.003
[2] BONNEFOY V, HOLMES DS.Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments[J].Environmental Microbiology, 2012, 14(7):1597-1611. doi: 10.1111/j.1462-2920.2011.02626.x
[3] WANG W, XIAO S, CHAO J, et al.Regulation of CO2 fixation gene expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n shock[J].J Microbiol Biotechnol, 2008, 18(11):1747-1754. http://europepmc.org/abstract/MED/19047816
[4] DONG Y, LIN H, XU X, et al.Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals[J].Hydrometallurgy, 2013, 140:42-47. doi: 10.1016/j.hydromet.2013.05.009
[5] ZHU J, WANG Q, ZHOU S, et al.Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans[J].Colloids Surf B Biointerfaces, 2015, 126:351-357. doi: 10.1016/j.colsurfb.2014.11.036
[6] LI Q, WANG Q, ZHU J, et al.Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans[J].Minerals, 2016, 6(4):100-111. doi: 10.3390/min6040100
[7] HE ZG, YANG YP, ZHOU S, et al.Effect of pyrite, elemental sulfur and ferrous ions on EPS production by metal sulfide bioleaching microbes[J].Transactions of Nonferrous Metals Society of China, 2014, 24(4):1171-1178. doi: 10.1016/S1003-6326(14)63176-9
[8] MISHRA B, BOYANOV M, BUNKER BA, et al.High- and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis[J]. Geochimica Et Cosmochimica Acta, 2010, 74(15):4219-4233. doi: 10.1016/j.gca.2010.02.019
[9] PLETTE ACC, VAN RIEMSDIJK WH, BENEDETTI MF, et al.pH dependent charging behavior of isolated cell walls of a gram-positive soil bacterium[J]. Journal of Colloid and Interface Science, 1995, 173(2):354-363. doi: 10.1006/jcis.1995.1335
[10] FEIN JB, BOILY JF, YEE N, et al.Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches[J]. Geochimica Et Cosmochimica Acta, 2005, 69(5):1123-1132. doi: 10.1016/j.gca.2004.07.033
[11] COX JS, SMITH DS, WARREN LA, et al.Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding[J]. Environmental Science & Technology, 1999, 33(24):4514-4521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d85a41f65ac2795557d40421b11407e
[12] MARTINEZ RE, SMITH DS, KULCZYCKI E, et al.Determination of intrinsic bacterial surface acidity constants using a donnan shell model and a continuous pKa distribution method[J]. Journal of Colloid and Interface Science, 2002, 253(1):130-139. doi: 10.1006/jcis.2002.8541
[13] HAAS JR, DICHRISTINA TJ, WADE R.Thermodynamics of U(Ⅵ) sorption onto Shewanella putrefaciens[J]. Chemical Geology, 2001, 180(1-4):33-54. doi: 10.1016/S0009-2541(01)00304-7
[14] KENNEY JPL, FEIN JB. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments[J]. Environmental Ence & Technology, 2011, 45(10):4446-4452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83e1a40e004daf00ce8cba7f76966238
[15] FEIN JB, YU Q, NAM J, et al. Bacterial cell envelope and extracellular sulfhydryl binding sites:Their roles in metal binding and bioavailability[J]. Chemical Geology, 2019, 521:28-38. doi: 10.1016/j.chemgeo.2019.04.026
[16] TURNER BF, FEIN JB. Protofit:a program for determining surface protonation constants from titration data[J]. Computers & Geosciences, 2006, 32(9):1344-1356. http://dl.acm.org/citation.cfm?id=1296604
[17] HE ZG, YANG YP, ZHOU S, et al. The effect of culture condition and ionic strength on proton adsorption at the surface of the extreme thermophile Acidianus manzaensis[J]. Colloids and Surfaces B-Biointerfaces, 2013, 102:667-673. doi: 10.1016/j.colsurfb.2012.09.028
[18] BURNETT P-G, HEINRICH H, PEAK D, et al. The effect of pH and ionic strength on proton adsorption by the thermophilic bacterium Anoxybacillus flavithermus[J]. Geochimica Et Cosmochimica Acta, 2006, 70(8):1914-1927. doi: 10.1016/j.gca.2006.01.009
[19] LI MK, HUANG YJ, YANG YP, et al. Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea:Acidianus manzaensis YN25[J]. Ecotoxicology and Environmental Safety, 2020, 190. doi: 10.1016/j.eurpolymj.2014.11.024
[20] TOURNEY J, NGWENYA BT. The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS-producing bacterial strain[J]. J Colloid Interface Sci, 2010, 348(2):348-354. doi: 10.1016/j.jcis.2010.04.082
[21] HAAS JR. Effects of cultivation conditions on acid-base titration properties of Shewanella putrefaciens[J]. Chemical Geology, 2004, 209(1-2):67-81. doi: 10.1016/j.chemgeo.2004.04.022
[22] WIGHTMAN PG, FEIN JB, WESOLOWSKI DJ, et al. Measurement of bacterial surface protonation constants for two species at elevated temperatures[J]. Geochimica Et Cosmochimica Acta, 2001, 65(21):3657-3669. doi: 10.1016/S0016-7037(01)00763-3
[23] DAUGHNEY CJ, FEIN JB. The Effect of Ionic Strength on the Adsorption of H+, Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis:A Surface Complexation Model[J]. Journal of Colloid And Interface Science, 1998, 198(1):53-77. doi: 10.1006/jcis.1997.5266
[24] GINN BR, FEIN JB. The effect of species diversity on metal adsorption onto bacteria[J]. Geochimica Et Cosmochimica Acta, 2008, 72(16):3939-3948. doi: 10.1016/j.gca.2008.05.063
[25] и.C.拉甫罗夫.胶体化学实验[M].高等教育出版社, 1992.
[26] SCHWARZ M, KLOSS S, STOCKEL S, et al. Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy[J]. Anal Bioanal Chem, 2017, 409(15):3779-3788. doi: 10.1007/s00216-017-0320-z
[27] ADOUT A, KANG S, ASATEKIN A, et al. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria[J]. Environmental Science & Technology, 2010, 44(7):2406-2411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d18b245b0a52a8d3e1081492ff8de262
-