冶金模式微生物Acidithiobacillus ferrooxidans表面质子吸附特性的研究

周姗, 栗树珍, 钟慧, 贺治国. 冶金模式微生物Acidithiobacillus ferrooxidans表面质子吸附特性的研究[J]. 矿产保护与利用, 2020, 40(4): 1-8. doi: 10.13779/j.cnki.issn1001-0076.2020.04.001
引用本文: 周姗, 栗树珍, 钟慧, 贺治国. 冶金模式微生物Acidithiobacillus ferrooxidans表面质子吸附特性的研究[J]. 矿产保护与利用, 2020, 40(4): 1-8. doi: 10.13779/j.cnki.issn1001-0076.2020.04.001
Shan ZHOU, Shuzhen LI, Hui ZHONG, Zhiguo HE. Study on Surface Proton Adsorption Characteristics of Bioleaching Model Microorganism Acidithiobacillus ferrooxidans[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 1-8. doi: 10.13779/j.cnki.issn1001-0076.2020.04.001
Citation: Shan ZHOU, Shuzhen LI, Hui ZHONG, Zhiguo HE. Study on Surface Proton Adsorption Characteristics of Bioleaching Model Microorganism Acidithiobacillus ferrooxidans[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 1-8. doi: 10.13779/j.cnki.issn1001-0076.2020.04.001

冶金模式微生物Acidithiobacillus ferrooxidans表面质子吸附特性的研究

  • 基金项目:
    国家自然科学基金(51774339)
详细信息
    作者简介: 周姗(1986-), 女, 湖南郴州人,硕士, 主要从事微生物相关研究, E - mail: zhousahn _csu@ 163. com
    通讯作者: 钟慧(1978-), 女, 河南开封人, 博士, 副教授, 主要从事微生物相关研究, E-mail:hmmzhjj@csu.edu.cn 贺治国(1978-), 男, 江西莲花人, 博士, 教授, 主要从事矿产资源综合利用及环境微生物技术研究, E-mail:zghe@csu.edu.cn
  • 中图分类号: Q939.97

Study on Surface Proton Adsorption Characteristics of Bioleaching Model Microorganism Acidithiobacillus ferrooxidans

More Information
  • 为了探究生物冶金过程及矿山酸性废水中的关键微生物Acidithiobacillus ferrooxidans的表面质子吸附机理,该研究通过酸碱滴定、ProtoFit模拟、电泳迁移率测定及傅里叶变换衰减全反射红外光谱法(ATR-FTIR)系统地揭示不同能源(S0、Fe2+、FeS2)和离子强度(0.001~0.1 mol/L NaNO3)对A.ferrooxidans表面性质的影响及参与质子化/去质子化反应的关键官能团。结果表明:三位点的Donnan壳静电模型能较好地适用于分析A.ferrooxidans的表面酸碱性质;能源和离子强度均影响A.ferrooxidans的表面酸碱性质;在广泛的pH值范围内(2~10),不同能源培养的A.ferrooxidans在不同离子强度下均呈负电性;羧基、磷酸基和酰胺基是质子化/去质子化过程的关键官能团。该研究表明了A.ferrooxidans在吸附重金属方面的重要应用潜力,并对阐明A.ferrooxidans的表面质子吸附机理具有重要意义。
  • 加载中
  • 图 1  黄铁矿X射线衍射图

    Figure 1. 

    图 2  S0(a)、Fe2+(b)、FeS2(c)培养的A. ferrooxidans不同离子强度酸碱滴定曲线

    Figure 2. 

    图 3  S0(a)、Fe2+(b)、FeS2(c)培养的A. ferrooxidans不同离子强度质子吸附/解吸附结果

    Figure 3. 

    图 4  S0(a)、Fe2+(b)、FeS2(c)培养的A. ferrooxidans不同离子强度电泳迁移率

    Figure 4. 

    图 5  S0(a)、Fe2+(b)和FeS2(c)培养的A. ferrooxidans在不同pH值的ATR-FTIR图谱

    Figure 5. 

    表 1  不同能源培养的A. ferrooxidans及一些生物表面的表面特性

    Table 1.  Surface characteristics of A. ferrooxidans and some biological surfaces

    Species, (culture) Source pk1 pk2 pk3 C1/(10-4 mol/g) C2/(10-4 mol/g) C3/(10-4 mol/g) Ctotal/(10-4mol/g)
    A. ferrooxidans, (S0) this paper 3.4 5.6 10.3 3.1 3.7 5.8 12.6
    A. ferrooxidans, (Fe2+) this paper 4.2 5.8 9.9 2.1 3.5 5.9 11.5
    A. ferrooxidans, (pyrite) this paper 2.4 6.9 10.3 1.3 2.8 7.9 11
    A. flavithermus Wightman et al. (2001)[22] 4.94 6.85 7.85 5.33 1.79 1.42 8.54
    B. subtilis, Daughney et al. (1998)[23] 4.8 6.49 8.52 6.92 4.44 6.29 17.6
    B. subtilis Daughney et al. (1998) 4.12 5.47 8.09 3.27 6.27 2.42 11.96
    A. manzaensis, (sulfur) He et al. (2013) 2.9 6.8 7.8 4.3 1.8 2.4 8.5
    A. manzaensis, (pyrite) He et al. (2013) 2.4 7 8.2 2.1 1.5 3.4 7
    T.thermophilus Ginn and Fein (2008)[24] 3.75 5.73 8.81 11.18 4.47 3.08 18.73
    下载: 导出CSV

    表 2  不同pH值下以S0、Fe2+或FeS2为能源培养的A. ferrooxidans表面主要官能团的比较

    Table 2.  Comparison on the main functional groups of A. ferrooxidans cultured with S0, Fe2+ or FeS2 at different pH values

    A. ferrooxidans (sulfur) A. ferrooxidans (pyrite) A. ferrooxidans (Fe2+) Wave number(cm-1) Functional groups
    pH=4.04, 5.66, 7.92 pH=2.01, 9.7 pH=2.01, 4.04, 5.66, 7.92 ~1 600-1 640 伯胺N-H面内弯曲
    pH=2.01, 4.04, 5.66, 7.97, 9.7 pH=2.01, 4.04, 5.66, 7.92, 9.7 pH=2.01, 4.04, 5.66, 7.92 ~1 540 酰胺Ⅱ类C=O基团的伸缩
    pH=4.04, 5.66, 7.92 pH=2.01, 9.7 ~1 455 CH2/CH3弯曲振动(剪式移动)
    pH=7.92 pH=2.01, 4.04, 5.66, 7.97 ~1 398 羧基对称性伸缩CH2/CH3弯曲振动
    pH=4.04, 5.66, 7.92 ~1 240 磷酸盐P=O基团伸缩振动
    pH=2.01, 4.04, 5.66, 7.97 pH=2.01, 4.04, 5.66, 9.7 ~1 200-900 PO-2的对称性和非对称性伸缩磷酸盐中的P(OH)2伸缩振动多糖中C-OH、C-O-C、C-C的振动
    pH=4.04, 5.66, 7.97 pH=2.01, 4.04, 5.66 PH=2.01, 4.04, 5.66, 7.92 ~1 080 仲醇C-O基团伸缩振动
    下载: 导出CSV
  • [1]

    DEVASIA P, NATARAJAN KA.Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces[J].International Journal of Mineral Processing, 2010, 94(3-4):135-139. doi: 10.1016/j.minpro.2010.02.003

    [2]

    BONNEFOY V, HOLMES DS.Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments[J].Environmental Microbiology, 2012, 14(7):1597-1611. doi: 10.1111/j.1462-2920.2011.02626.x

    [3]

    WANG W, XIAO S, CHAO J, et al.Regulation of CO2 fixation gene expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n shock[J].J Microbiol Biotechnol, 2008, 18(11):1747-1754. http://europepmc.org/abstract/MED/19047816

    [4]

    DONG Y, LIN H, XU X, et al.Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals[J].Hydrometallurgy, 2013, 140:42-47. doi: 10.1016/j.hydromet.2013.05.009

    [5]

    ZHU J, WANG Q, ZHOU S, et al.Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans[J].Colloids Surf B Biointerfaces, 2015, 126:351-357. doi: 10.1016/j.colsurfb.2014.11.036

    [6]

    LI Q, WANG Q, ZHU J, et al.Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans[J].Minerals, 2016, 6(4):100-111. doi: 10.3390/min6040100

    [7]

    HE ZG, YANG YP, ZHOU S, et al.Effect of pyrite, elemental sulfur and ferrous ions on EPS production by metal sulfide bioleaching microbes[J].Transactions of Nonferrous Metals Society of China, 2014, 24(4):1171-1178. doi: 10.1016/S1003-6326(14)63176-9

    [8]

    MISHRA B, BOYANOV M, BUNKER BA, et al.High- and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis[J]. Geochimica Et Cosmochimica Acta, 2010, 74(15):4219-4233. doi: 10.1016/j.gca.2010.02.019

    [9]

    PLETTE ACC, VAN RIEMSDIJK WH, BENEDETTI MF, et al.pH dependent charging behavior of isolated cell walls of a gram-positive soil bacterium[J]. Journal of Colloid and Interface Science, 1995, 173(2):354-363. doi: 10.1006/jcis.1995.1335

    [10]

    FEIN JB, BOILY JF, YEE N, et al.Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches[J]. Geochimica Et Cosmochimica Acta, 2005, 69(5):1123-1132. doi: 10.1016/j.gca.2004.07.033

    [11]

    COX JS, SMITH DS, WARREN LA, et al.Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding[J]. Environmental Science & Technology, 1999, 33(24):4514-4521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d85a41f65ac2795557d40421b11407e

    [12]

    MARTINEZ RE, SMITH DS, KULCZYCKI E, et al.Determination of intrinsic bacterial surface acidity constants using a donnan shell model and a continuous pKa distribution method[J]. Journal of Colloid and Interface Science, 2002, 253(1):130-139. doi: 10.1006/jcis.2002.8541

    [13]

    HAAS JR, DICHRISTINA TJ, WADE R.Thermodynamics of U(Ⅵ) sorption onto Shewanella putrefaciens[J]. Chemical Geology, 2001, 180(1-4):33-54. doi: 10.1016/S0009-2541(01)00304-7

    [14]

    KENNEY JPL, FEIN JB. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments[J]. Environmental Ence & Technology, 2011, 45(10):4446-4452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83e1a40e004daf00ce8cba7f76966238

    [15]

    FEIN JB, YU Q, NAM J, et al. Bacterial cell envelope and extracellular sulfhydryl binding sites:Their roles in metal binding and bioavailability[J]. Chemical Geology, 2019, 521:28-38. doi: 10.1016/j.chemgeo.2019.04.026

    [16]

    TURNER BF, FEIN JB. Protofit:a program for determining surface protonation constants from titration data[J]. Computers & Geosciences, 2006, 32(9):1344-1356. http://dl.acm.org/citation.cfm?id=1296604

    [17]

    HE ZG, YANG YP, ZHOU S, et al. The effect of culture condition and ionic strength on proton adsorption at the surface of the extreme thermophile Acidianus manzaensis[J]. Colloids and Surfaces B-Biointerfaces, 2013, 102:667-673. doi: 10.1016/j.colsurfb.2012.09.028

    [18]

    BURNETT P-G, HEINRICH H, PEAK D, et al. The effect of pH and ionic strength on proton adsorption by the thermophilic bacterium Anoxybacillus flavithermus[J]. Geochimica Et Cosmochimica Acta, 2006, 70(8):1914-1927. doi: 10.1016/j.gca.2006.01.009

    [19]

    LI MK, HUANG YJ, YANG YP, et al. Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea:Acidianus manzaensis YN25[J]. Ecotoxicology and Environmental Safety, 2020, 190. doi: 10.1016/j.eurpolymj.2014.11.024

    [20]

    TOURNEY J, NGWENYA BT. The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS-producing bacterial strain[J]. J Colloid Interface Sci, 2010, 348(2):348-354. doi: 10.1016/j.jcis.2010.04.082

    [21]

    HAAS JR. Effects of cultivation conditions on acid-base titration properties of Shewanella putrefaciens[J]. Chemical Geology, 2004, 209(1-2):67-81. doi: 10.1016/j.chemgeo.2004.04.022

    [22]

    WIGHTMAN PG, FEIN JB, WESOLOWSKI DJ, et al. Measurement of bacterial surface protonation constants for two species at elevated temperatures[J]. Geochimica Et Cosmochimica Acta, 2001, 65(21):3657-3669. doi: 10.1016/S0016-7037(01)00763-3

    [23]

    DAUGHNEY CJ, FEIN JB. The Effect of Ionic Strength on the Adsorption of H+, Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis:A Surface Complexation Model[J]. Journal of Colloid And Interface Science, 1998, 198(1):53-77. doi: 10.1006/jcis.1997.5266

    [24]

    GINN BR, FEIN JB. The effect of species diversity on metal adsorption onto bacteria[J]. Geochimica Et Cosmochimica Acta, 2008, 72(16):3939-3948. doi: 10.1016/j.gca.2008.05.063

    [25]

    и.C.拉甫罗夫.胶体化学实验[M].高等教育出版社, 1992.

    [26]

    SCHWARZ M, KLOSS S, STOCKEL S, et al. Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy[J]. Anal Bioanal Chem, 2017, 409(15):3779-3788. doi: 10.1007/s00216-017-0320-z

    [27]

    ADOUT A, KANG S, ASATEKIN A, et al. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria[J]. Environmental Science & Technology, 2010, 44(7):2406-2411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d18b245b0a52a8d3e1081492ff8de262

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1746
  • PDF下载数:  184
  • 施引文献:  0
出版历程
收稿日期:  2020-03-25

目录