Expansion Experimental Study for Rapid Oxidation of Fe2+ in Adsorption Tail Solution of In-situ Uranium Leaching by a Bacteria in Field in Xinjiang
-
摘要: 为了节省酸法浸铀过程中氧化剂用量,以多孔耐酸陶粒作载体固定耐冷嗜酸硫杆菌,在新疆某酸法地浸采铀矿山构建了高7.0 m、内径2.0 m、总容积17.8 m3的新型高效生物反应器,进行快速氧化地浸采铀吸附尾液中Fe2+扩大试验研究。研究结果表明,在现场温度为5~24℃、吸附尾液中Fe2+浓度为200~300 mg/L、通气量为59.0 m3/h时,生物反应器的最大流量可达28.2 m3/h,Eh(氧化还原电位)大于570 mV,尾液中Fe2+在低温环境下可被快速完全氧化。该试验结果为细菌代替氧化剂氧化吸附尾液中Fe2+的拓展应用提供了借鉴意义。Abstract: In order to save the amount of oxidants for acid leaching of uranium, a new type of high-efficiency bioreactor with 7.0 m in height, 2.0 m in inner diameter and 17.8 m3 in total volume was designed and constructed in a uranium mine of Xinjiang, porous acid resistant ceramsites were selected as the carriers of bacteria, and the Fe2+ in the tail liquor of in-situ leaching of uranium by Acidithiobacillus ferrivorans immobilized on the carriers at low temperature, to carry out an extended experimental study. The results showed that the maximum flow rate of bioreactor was 28.2 m3/h when Fe2+ concentration was 200~300 mg/L and aeration rate was 59.0 m3/h under the condition of 5~24 ℃ in the field, and the Fe2+ in the tail liquor could be oxidized rapidly and completely when the Eh(Redox potential) was above 570 mV. This experiment provides reference significance for the application of bacteria instead of oxidant to oxidize and adsorb Fe2+ in tail liquor.
-
Key words:
- in-situ leaching of uranium /
- bioreactor /
- acidithiobacillus ferrivorans /
- ferrous oxide
-
-
表 1 吸附尾液成分
Table 1. Components of adsorption tail solution
Component SO42- PO43- Cl- Fe2+ ∑Fe Ca2+ Mg2+ NH4+ K+ Na+ U Content/(mg·L-1) 8 450 1.85 250 323 525 635 520 82 28.6 456 < 0.5 -
[1] 王芷晴, 周秀艳, 李雪洁, 等.生物浸矿领域中功能微生物的研究进展[J].金属矿山.2019(11):125-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201911023
[2] SHI CHAOHONG, ZHU NENGWU, SHANG RU, et al. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums[J]. World journal of microbiology & biotechnology, 2015, 31(11):1719-1728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=572de3b73a90fe9711cba2ccbd3b95ad
[3] PRIYA ANSHU, HAIT SUBRATA.Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching[J]. Environmental science and pollution research international, 2017, 24(8):6989-7008. doi: 10.1007/s11356-016-8313-6
[4] 赵凯, 黎广荣, 周义朋, 等.砂岩型铀矿浸出研究进展.有色金属(冶炼部分)[J].2019(6):40-48.
[5] KEVIN B. HALLBERG, ELENA GGONZALEZ-TORIL, D. BARRIE JOHNSON. Acidithiobacillus ferrivorans, sp.nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments[J]. Extremophiles, 2010, 14(1):9-19. doi: 10.1007/s00792-009-0282-y
[6] SERGIO BARAHONA, CRISTINA DORADOR, RUIYONG ZHANG, et al.Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano:attachment and biofilm formation on pyrite at low temperature[J]. Research in Microbiology, 2014, 165(9):782-793. doi: 10.1016/j.resmic.2014.07.015
[7] 陈鹏, 王清良, 胡鄂明, 等.耐冷嗜酸硫杆菌的生长特性和固定化培养[J].金属矿山, 2018(3):90-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201803018
[8] 张瑞, 刘亚洁, 徐玲玲, 等.不同初始总铁量下的冶金菌液培养过程中Fe^3+/∑Fe值、pH值和Eh值的变化规律及其对冶金菌液生产的影响[J].冶金丛刊, 2008(5):4-6. http://www.cnki.com.cn/Article/CJFDTotal-ACJS200801008.htm
[9] 杨开智.氧化亚铁硫杆菌对原生碲矿的浸出工艺及机理初探[D].成都:成都理工大学, 2017.
[10] 陈鹏.耐冷嗜酸硫杆菌快速氧化地浸采铀吸附尾液中Fe~(2+)工艺与应用研究[D].衡阳:南华大学, 2018.
[11] 王清良, 陈鹏, 胡鄂明, 等.耐冷嗜酸硫杆菌快速氧化地浸采铀吸附尾液中Fe~(2+)[J].化工进展, 2018(10):3995-4005. doi: 10.16085/j.issn.1000-6613.2017-2356
[12] 王汉青, 节梦瑞, 张会宁, 等.BF-MBR处理废水及膜污染控制的研究进展[J].水处理技术, 2020(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scljs202005001
[13] 高放, 马林, 霍涛, 等.膜生物反应器污染及防控方法研究进展[J].环境工程, 2020(3):69-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc202003012
[14] 丁文川, 曾晓岚, 王永芳, 等.生物炭载体的表面特征和挂膜性能研究[J].中国环境科学, 2011(9):1451-1455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201109007
[15] 韩正伟, 刘志红, 张覃, 等.磷矿浮选废水结垢物硫酸钙与阻垢剂作用机理研究[J].矿冶工程, 2018(4):102-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201804026
[16] 陶芳芳, 宁尚雷, 靳海波, 等.气液并流向上填充鼓泡塔液体混合特性的研究[J].化学工程, 2020(5):64-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxgc202005015
[17] 王威杰, 雍玉梅, 杨超, 等.三维上流式反应器床层流动和返混特性[J].化工学报, 2018(1):381-388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201801033
[18] 姜艾伶, 刘佳欣, 熊慧欣, 等.A.ferrooxidans培养过程中Al/Fe(摩尔比)对铁矿物形成产物的影响[J].岩石矿物学杂志, 2019(6):782-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201906006
[19] 金捷, 朱红萍, 王成刚.PECVD布气装置气流场的模拟分析[J].现代制造工程, 2012(12):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgys201212023
-