Research Status on Ultrafine Crushing and Its Application in Processing of Phosphate Rock
-
摘要:
超细粉碎技术是将原材料加工成微米甚至纳米级别的一种重要技术手段,其研究能够有效提高资源利用率。阐述了超细粉碎过程中,由于机械力的作用,导致晶粒尺寸减小,晶体发生错位和缺陷,进而产生晶格畸变等晶体结构变化,并简述添加助磨剂对超细粉碎的影响;叙述了超细粉碎技术引起磷矿的性质及结构的变化,以及对释磷能力的影响。介绍了常用超细粉碎设备,着重叙述其工作原理、适用范围及优缺点等。
Abstract:Ultrafine crushing technology is an important technical means to process raw materials into microns or even nanometers, and its research can effectively improve resource utilization. Due to mechanical force, grain size reduction, crystal dislocation, and defects were introduced, in the process of ultrafine crushing, which will result in lattice distortion and other structural changes. The effect of grinding agents on ultrafine crushing was also listed. Furthermore, the effect of ultrafine crushing on the crystalline structure of minerals and the phosphorus release capacity of phosphate ore were mainly discussed. Meanwhile, the typical ultrafine crushing equipment and its applicable scope and advantages and disadvantages are introduced.
-
Key words:
- mechanical force /
- ultrafine crushing /
- phosphate ore /
- grinding agents /
- crushing equipment
-
-
[1] 尹艳红, 朱应禄. 机械力化学及其发展趋势[J]. 冶金丛刊, 2008(6): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YJCO200806009.htm
[2] 闫蒙钢, 慈洁琳. 物理化学的奠基者-奥斯特瓦尔德[J]. 大学化学, 2013, 28(6): 71-74 https://www.cnki.com.cn/Article/CJFDTOTAL-DXHX201306019.htm
[3] 杨华明, 邱冠周, 王淀佐. 超细粉碎机械化学的发展[J]. 金属矿山, 2000(9): 21-24, 31. doi: 10.3321/j.issn:1001-1250.2000.09.007
[4] 尹小冬, 王长会, 谭涌, 等. 超细粉碎技术现状与应用[J]. 中国非金属矿工业导刊, 2009(3): 46-49. doi: 10.3969/j.issn.1007-9386.2009.03.016
[5] 王瑛玮. 矿物超细粉碎方法研究与磨矿试验[D]. 长春: 吉林大学, 2005.
[6] 罗驹华. 非金属矿物粉体机械力化学研究进展[J]. 化工矿物与加工, 2004(11): 5-8. doi: 10.3969/j.issn.1008-7524.2004.11.002
[7] 张平, 孟磊, 石元亮. 不同类型磷矿石的机械活化效果研究[J]. 化工矿物与加工, 2014, 43(8): 13-15, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201408004.htm
[8] STRATIGAKI MARIA, GOSTL ROBERT. Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores. [J]. Chem Plus Chem, 2020, 85(6): 1095-1103. http://onlinelibrary.wiley.com/doi/10.1002/cplu.201900737
[9] 李冷, 曾宪滨. 粉碎机械力化学的进展及其在材料开发中的应用[J]. 武汉工业大学学报, 1993(1): 23-26. doi: 10.3321/j.issn:1671-4431.1993.01.005
[10] WU KJ, JU T, DENG Y, et al. Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. [J]. Trends in Food Science & Technology, 2017, 66: 166-175. http://www.researchgate.net/publication/315667783_Mechanochemical-assisted_extraction_method_on_Medicinal_plants_A_Brief_Review/download
[11] KATCHALSKY A, ZWICK M. Zwick. Mechanochemistry and ion exchange[J]. Journal of Polymer Science, 1955, 16(82): 221-23. doi: 10.1002/pol.1955.120168212
[12] AHEMD EJAZ, KAROTHU DURGA PRASAD, et al. From mechanical effects to mechanochemistry: softening and depression of the melting point of deformed plastic crystals. [J]. Journal of the American Chemical Society 2020, 142(25): 11219-11231. doi: 10.1021/jacs.0c03990
[13] KRAVCHENKO VP, BAGLYUK GA, TROTSAN AI. Effectiveness of jet milling for producing superfine powders from blast-furnace slag. [J]. Powder Metallurgy and Metal Ceramics, 2017, 55: (11-12). doi: 10.1007/s11106-017-9863-y
[14] EDWIN H. MENA, TAO LIU, XIANYAN LIAO, et al, Junyi Huang. Effect of superfine grinding on the phytochemicals and antioxidant activities of mulberry leaves[J]. Science Journal of Public Health, 2016, 4(3): 138. doi: 10.11648/j.sjph.20160403.11
[15] 李鹏举, 谭琦, 赵姬, 等. 低品位滑石超细粉碎-表面改性一体化研究[J]. 矿产保护与利用, 2016(3): 45-48. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1d1cbc5c-c323-439e-a4d9-11afc872b0d5
[16] 罗驹华, 张少明. 机械力化学法制备单相莫来石的机理研究[J]. 硅酸盐学报, 2005(5): 568-571. doi: 10.3321/j.issn:0454-5648.2005.05.008
[17] 王宇斌, 文堪, 汪潇, 等. 白云母粉体超细磨过程研究[J]. 矿产保护与利用, 2019(2): 70-74. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=5caebb5b-9ae2-42ef-8dba-f36c59b27eb1
[18] 田文, 吕莉, 梁斌, 等. 机械活化对钛铁矿高温氧化过程的影响[J]. 化学反应工程与工艺, 2011, 27(6): 537-542. doi: 10.3969/j.issn.1001-7631.2011.06.010
[19] 胡保全, 白培康, 程军. 高能球磨制备Mo-3%Cu纳米晶复合粉末特性[J]. 功能材料, 2011, 42(S1): 73-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2011S1021.htm
[20] DUAN H, MU XF, WANG Y. The efficiency analysis on assistant-grinding of lignosulfonate and its modified composites. [J]. IOP Conference Series: Materials Science and Engineering 2018, 2(2): 21-23. doi: 10.1088/1757-899X/284/1/012025
[21] 潘东, 杨建国, 葛源, 等. 煤基碳素的石英砂超细助磨研究[J]. 矿产保护与利用, 2018(5): 106-109, 150. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7ff2342a-aa8e-440e-ac83-02d287905a63
[22] 郭高巍. 白云母超细粉体的制备及助磨机理的研究[D]. 西安: 西安建筑科技大学, 2015.
[23] 吴一善, 温建康. 高岭土助磨工艺研究[J]. 非金属矿, 1993(3): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK199303001.htm
[24] 李冷, 曾宪滨. 石墨的粉碎机械力化学研究[J]. 武汉工业大学学报, 1996(1): 50-53. doi: 10.3321/j.issn:1671-4431.1996.01.015
[25] 单志伟, 李凤久, 刘立伟, 等. 超细粉磨活化河北某磷矿粉试验研究[J]. 矿产综合利用, 2020(2): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202002009.htm
[26] XIAO YH, SHI-LL, FANG YC, et al. Variability of environmental factors and the effects on vegetation diversity with different restoration years in a large open-pit phosphorite mine. 2019, 127: 245-253.
[27] 韩凤兰, 吴澜尔. 天然羟基磷灰石超细粉碎试验研究[J]. 矿产保护与利用, 2007(2): 17-19. doi: 10.3969/j.issn.1001-0076.2007.02.005 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f913d7e1-6f2b-454a-aca0-962a2cbd6545
[28] 杨华明, 陈德良, 邱冠周. 超细粉碎机械化学的研究进展[J]. 中国粉体技术, 2002, 8(2): 32-37. doi: 10.3969/j.issn.1008-5548.2002.02.010
[29] 林胜. 我国超细粉碎设备的现状与展望[J]. 中国粉体技术, 2016, 22(2): 78-81, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-FTJS201602021.htm
[30] MINJIGMAA A, TEMUUJIN J, KHASBAATAR D, et al. Influence of mechanical distortion on the solubility of fluorapatite[J]. Minerals Engineering, 2006, 20(2): 194-196. http://www.sciencedirect.com/science/article/pii/S0892687506002202
[31] 张平, 孟磊, 石元亮. 不同类型磷矿石的机械活化效果研究[J]. 化工矿物与加工, 2014, 43(8): 13-15, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201408004.htm
[32] MINJIGMAA A, OYUN-ERDENE G, ZOLZAYA T, et al. Phosphorus fertilizer prepared from natural burenkhaan phosphorite (mongolia) by a mechanical activation. [J] Geosystem Engineering 2016, 19(3): 119-124. doi: 10.1080/12269328.2015.1137501
[33] JARGALBAT P, BATDEMBEREL G, CHADRAABAL SH, et al. Crystal structure of mongolian phosphorite minerals and mechanochemistry[J]. Physical Chemistry, 2014, 4(2): 30-34. http://ieeexplore.ieee.org/document/5667927/
[34] 王晨, 高宏, 应媛芳, 等. 机械化学法活化磷矿的机理研究[J]. 硅酸盐通报, 2018, 37(12): 4007-4011. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812050.htm
[35] 王晨, 高宏, 刘淑红, 等. 中低品位磷矿粉的机械力化学活化与活性表征[J]. 化工矿物与加工, 2012, 41(7): 1-4. doi: 10.3969/j.issn.1008-7524.2012.07.001
[36] 谢超, 吴三琴, 张泽朋, 等. 机械力化学法制备有机改性蒙脱石粉体[J]. 中国粉体技术, 2014, 20(1): 7-12. doi: 10.3969/j.issn.1008-5548.2014.01.002
[37] 魏静, 周恩湘, 张桂银, 等. 不同活化剂对磷矿粉的活化作用[J]. 河北农业大学学报, 2001(1): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CULT200101004.htm
[38] 孙逊, 孟磊, 石元亮. 磷矿粉机械活化有效性研究[J]. 吉林农业科学, 2014, 39(1): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK201401013.htm
[39] 林胜. 我国超细粉碎设备的现状与展望[J]. 中国粉体技术, 2016, 22(2): 78-81, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-FTJS201602021.htm
[40] 于大雪, 武敬杰. 秸秆超细粉碎设备现状及研究[J]. 吉林化工学院学报, 2019, 36(12): 60-62, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-JHXY201912014.htm
[41] 郑水林. 超细粉碎设备现状与发展趋势[J]. 中国非金属矿工业导刊, 2004(3): 3-6, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200403000.htm
[42] 徐鹏金. 浅述石墨超细粉碎的研究现状[J]. 中国粉体工业, 2019(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFT201905005.htm
[43] 张国旺, 黄圣生. 超细粉碎技术的应用和发展[J]. 矿业快报, 2002(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200201000.htm
[44] 姚敏. 振动磨动态特性分析及变频控制研究[D]. 长春: 吉林大学, 2005.
-
计量
- 文章访问数: 1926
- PDF下载数: 124
- 施引文献: 0