-
摘要:
磷矿石是磷化工生产的重要原料,在国民经济的发展中占有重要地位。磷矿石入选品位的降低、有用矿物与脉石矿物性质相似、矿物嵌布粒度过细等不利因素影响着磷矿选矿技术的发展。通过研究药剂与矿物之间的相互作用机理有助于改善矿物的选别效果,综述了磷矿石的重要性和浮选现状,着重研究了六偏磷酸钠在中低品位磷矿石浮选中的应用及作用机理。研究发现六偏磷酸钠在磷矿石浮选中有两个主要作用:一是六偏磷酸钠的加入会与捕收剂在磷灰石矿物表面形成竞争吸附,抑制捕收剂在磷灰石矿物表面的吸附,从而改变矿物的亲疏水性;二是六偏磷酸钠的加入会引起矿物表面电荷发生改变,使得矿物颗粒间相互作用力随之发生改变,增加矿物颗粒的分散性,从而优化矿物浮选条件。
Abstract:Phosphate ore is an important raw material for phosphorus chemical production and plays an important role in the development of national economy. The negative factors such as the decrease of phosphate ore inclusion grade, the similarity of mineral properties between useful minerals and gangue minerals, and the excessively fine mineral mosaics affect the development of phosphate ore dressing technology. The study of the interaction mechanism between agents and minerals is helpful to improve the mineral separation effect, the importance and flotation status of phosphate ores were reviewed, and the application and mechanism of sodium hexametaphosphate in flotation of medium-grade and low-grade phosphate ores were emphatically studied. It is found that sodium hexametaphosphate has two main roles in phosphate ore flotation: First, the addition of sodium hexametaphosphate will form a competitive adsorption with the collector on the apatite mineral surface, which further inhibits the adsorption of the collector on the apatite mineral surface, thus changing the hydrophilicity of the mineral; The second is that the addition of sodium hexametaphosphate will cause the change of mineral surface potential, so that the interaction force between mineral particles will change accordingly, increasing the dispersion of mineral particles, and thus optimizing the mineral flotation conditions.
-
Key words:
- phosphate ore /
- sodium hexametaphosphate /
- hydrophobicity /
- dispersibility
-
-
表 1 浮选方法和处理矿石类型
Table 1. The relation between flotation methods and ore types
浮选方法 矿石类型 应用实例 正浮选 岩浆岩型或沉积变质型磷灰石 马营磷矿选厂、锦屏磷矿选厂 反浮选 沉积型硅钙质磷块岩 瓮福磷矿选厂、海口磷矿选厂 正-反浮选(反-正浮选) 硅钙质胶磷矿 昆阳和安宁中低品位胶磷矿选厂、大峪口磷矿选厂 双反浮选 高硅镁型磷块岩或胶磷矿 远安磷矿选厂、宜化殷家坪磷矿选厂 表 2 六偏磷酸钠对细粒磷灰石和白云石纯矿物浮选影响
Table 2. Effects of Sodium hexametaphosphate on flotation of fine apatite and dolomite
六偏磷酸钠浓度/(mg·L-1) 产品 产率/% P2O5品位/% P2O5回收率/% 0 精矿 38.90 32.40 65.92 尾矿 61.10 10.67 34.08 给矿 100.0 19.12 100.0 2 精矿 44.36 34.50 80.04 尾矿 55.64 6.86 19.96 给矿 100.0 19.12 100.0 表 3 六偏磷酸钠对细粒磷灰石和白云石纯矿物表面电位影响
Table 3. Effects of sodium hexametaphosphate on surface potential of fine apatite and dolomite
样品 pH 表面电位/mV HCl HCl+SHMP HCl+NaOL HCl+SHMP+NaOL 白云石 9.60 -8.19 -29.00 -29.60 -31.80 4.40 10.04 -4.15 -5.20 -11.69 磷灰石 9.30 -24.40 -30.10 -29.70 -32.70 4.40 -9.33 -10.30 -21.70 -18.80 -
[1] 张汉泉, 周峰, 许鑫, 等. 中国磷矿开发利用现状[J]. 武汉工程大学学报, 2020, 42(2): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG202002008.htm
[2] QIN BO CAO, JIN HUA CHENG, SHU MING WEN, et al. A mixed collector system for phosphate flotation[J]. Minerals Engineering, 2015, 78: 114-121. doi: 10.1016/j.mineng.2015.04.020
[3] 汪灵. 战略性非金属矿产的思考[J]. 矿产保护与利用, 2019, 39(6): 1-7. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=17866a29-583c-4e81-87ad-306c766bfd29
[4] 印万忠, 唐远, 姚金, 等. 矿物浮选过程中的交互影响[J]. 矿产保护与利用, 2018(3): 55-60. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=05329d24-599b-4b35-ba99-89d8b432994d
[5] RICHAED M KASOMO, HONG QIANG LI, HUI FANG ZHENG, et al. Depression of the selective separation of rutile from almandine by Sodium Hexametaphosphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593. http://www.sciencedirect.com/science/article/pii/S0927775720302247
[6] GAO YUESHENG, GAO ZHIYONG, SUN WEI, et al. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation[J]. Journal of colloid and interface science, 2018, 512: 39-46. doi: 10.1016/j.jcis.2017.10.045
[7] 王永龙, 张芹, 周亮, 等. 油酸钠体系中微细粒胶磷矿的浮选行为[J]. 金属矿山, 2013(10): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201310021.htm
[8] 黄齐茂, 黄晶晶, 王巍, 等. 湖北某胶磷矿粗选工艺的优化[J]. 武汉工程大学学报, 2011, 33(2): 17-19. doi: 10.3969/j.issn.1674-2869.2011.02.004
[9] 任翔, 张洪恩. 细粒菱锰矿、磷灰石溶解组分对其浮选分离的交互作用[J]. 北京矿冶研究总院学报, 1993(4): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ199304004.htm
[10] YAN FEI CHEN, QI MING FENG, GUO FAN ZHANG, et al. Effect of sodium pyrophosphate on the reverse flotation of dolomite[J]. Minerals, 2018, 8: 278. doi: 10.3390/min8070278
[11] 杨勇, 刘云涛, 李丰. 磷矿反浮选脱硅分批加药优化研究[J]. 化工矿物与加工, 2015, 44(1): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201501001.htm
[12] 李学军, 王丽娟, 鲁安怀, 等. 天然蛇纹石活性机理初探[C]//. 中国地质学会. 第二届全国环境矿物学学术研讨会论文集. 北京: 中国地质学会, 2004: 67-71.
[13] YI PING LU, MING QIANG ZHANG, QI MING FENG, et al. Effect of sodium hexametaphosphate on separation of serpentine from pyrite[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 208-213. doi: 10.1016/S1003-6326(11)60701-2
[14] 季学福. 六偏磷酸钠水解的计算及药龄控制[J]. 工业水处理, 1984(3): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC198403001.htm
[15] 王眉龙. 磷矿稀土在硫、磷混酸体系下的反应机理研究[D]. 贵阳: 贵州大学, 2015.
[16] 王文潜. 六偏磷酸钠及其在锡石浮选中的应用[J]. 有色金属(冶炼部分), 1977(1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-METE197701004.htm
[17] SALAH El-DIN El-MOFTY, AYMAN El-MIDANY. Calcite flotation in potassium oleate/potassium dihydrogen phosphate system[J]. Journal of Surfactants and Detergents, 2015, 18(5): 905-911. doi: 10.1007/s11743-015-1707-5
[18] ELGILLANI D A, ABOUZEID A. -Z. M. Flotation of carbonates from phosphate ores in acidic media[J]. Elgillani D. A; Abouzeid A. -Z. M. , 1993, 38(3/4): 235-256. http://www.sciencedirect.com/science/article/pii/030175169390077N
[19] M. MOHAMMADKHANI, M. NOAPARAST, S. Z. SHFAEI, et al. Double reverse flotation of a very low-grade sedimentary phosphate rock, rich in carbonate and silicate[J]. International Journal of Mineral Processing, 2011, 100(3): 157-165. http://www.sciencedirect.com/science/article/pii/S0301751611000950
[20] 祁宗, 孙传尧. 白云石浮选中磷酸根与捕收剂的竞争关系分析[J]. 有色金属工程, 2013, 3(1): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201301015.htm
[21] 韩英, 钟康年, 汤亚飞, 等. 对磷酸类抑制剂的探索[J]. 中国矿业, 1998(5): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199805015.htm
[22] 谢国先, 罗廉明, 夏敬源, 等. 钙(镁)质胶磷矿脱镁反浮选酸的作用机理探析[J]. 化工矿物与加工, 2010, 39(10): 9-10, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201010005.htm
[23] 宋少先, 卢寿慈. 微粒菱锰矿与脉石矿物互凝及化学分散作用的研究[J]. 矿冶工程, 1988(2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC198802004.htm
[24] 李治杭, 韩跃新, 李艳军, 等. 六偏磷酸钠对蛇纹石作用机理分析[J]. 矿产综合利用, 2016(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201604012.htm
[25] 王纪镇, 印万忠, 孙忠梅. 白钨矿与磷灰石浮选的选择性抑制及机理研究[J]. 有色金属工程, 2019, 9(2): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201902012.htm
[26] YI JIANG LI, WEN CHENG XIA, LI PAN, et al. Flotation of low-rank coal using sodium oleate and sodium hexametaphosphate[J]. Journal of Cleaner Production, 2020, 261. http://www.sciencedirect.com/science/article/pii/S0959652620312634
[27] 叶军建. 微细粒磷灰石浮选的界面调控研究[D]. 贵阳: 贵州大学, 2019.
[28] JUN JIAN YE, XIAN CHEN WANG, XIAN BO LI, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11): 1655-1663. http://www.tandfonline.com/doi/full/10.1080/01932691.2018.1461639
[29] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1978.
[30] MISHRA S. K. The electrokinetics of apatite and calcite in inorganic electrolyte environment[J]. Mishra S. K, 1978, 5(1): 69-83. http://www.sciencedirect.com/science/article/pii/0301751678900066
-