低品位难选铁矿转底炉直接还原中试研究

刘长正, 曹志成, 彭程, 崔慧君. 低品位难选铁矿转底炉直接还原中试研究[J]. 矿产保护与利用, 2020, 40(4): 58-63. doi: 10.13779/j.cnki.issn1001-0076.2020.07.007
引用本文: 刘长正, 曹志成, 彭程, 崔慧君. 低品位难选铁矿转底炉直接还原中试研究[J]. 矿产保护与利用, 2020, 40(4): 58-63. doi: 10.13779/j.cnki.issn1001-0076.2020.07.007
Changzheng LIU, Zhicheng CAO, Cheng PENG, Huijun CUI. Pilot Study on Direct Reduction of Low Grade Refractory Iron Ore by Rotary Hearth Furnace[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 58-63. doi: 10.13779/j.cnki.issn1001-0076.2020.07.007
Citation: Changzheng LIU, Zhicheng CAO, Cheng PENG, Huijun CUI. Pilot Study on Direct Reduction of Low Grade Refractory Iron Ore by Rotary Hearth Furnace[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 58-63. doi: 10.13779/j.cnki.issn1001-0076.2020.07.007

低品位难选铁矿转底炉直接还原中试研究

详细信息

Pilot Study on Direct Reduction of Low Grade Refractory Iron Ore by Rotary Hearth Furnace

More Information
  • 采用转底炉直接还原焙烧-磁选方法,对低品位难选铁矿进行了转底炉中试试验研究。混合物料配比是m(原矿):m(焦粉):m(膨润土):m(液体粘结剂)=100:33:4:8,转底炉焙烧温度1 250℃~1 330℃,还原时间为42 min,含碳球团厚度3层(约60 mm),最终获得的球团平均金属化率83.44%,两段磨矿磁选所得还原铁粉产率39.52%,铁品位94.39%,铁回收率83.34%。对还原铁粉压块,压块密度为4.78 t/m3,可以作为优质的电炉炼钢原料。
  • 加载中
  • 图 1  原矿XRD分析图

    Figure 1. 

    图 2  原矿电镜图

    Figure 2. 

    图 3  转底炉中试处理低品位难选矿

    Figure 3. 

    图 4  湿球(左)与干球(右)形貌

    Figure 4. 

    图 5  球团落下强度、含水率及碳含量

    Figure 5. 

    图 6  料层厚度对指标的影响

    Figure 6. 

    表 1  原矿化学多元素分析 /%

    Table 1.  Multi-elements analysis results of raw ores

    Element TFe FeO SiO2 Al2O3 CaO MgO K2O Na2O Pb Zn S P
    Content 44.76 2.01 19.64 2.22 2.56 1.45 0.78 0.23 0.33 0.34 0.68 0.09
    下载: 导出CSV

    表 2  原矿Fe的化学物相分析结果 /%

    Table 2.  Multi-elements analysis results of Fe in raw ores

    Category Fe in hematite(limonite) Fe in carbonate Fe in sulfide ores Fe in other ores total
    Content 40.50 2.35 0.51 1.61 45.02
    Proportion 90.07 5.23 1.12 3.58 100.00
    Explanation: ' Fe in other ores ' mainly refers to iron in silicate minerals.
    下载: 导出CSV

    表 3  转底炉中试试验主要设备

    Table 3.  Main equipments for pilot test of rotary hearth furnace

    Serial number Equipment name Equipment model and parameters Application of the equipment Equipment sets
    1 XLH mixer 22 kW, 380 V raw material mixture XLH mixer
    2 twinroller machine maximum linear pressure 11t/cm preparation of pellets 1
    3 mesh belt dryer three layers; 2.2 kW drying 1
    4 RHF charging width: 2 m;3t/h reduction 1
    5 ball grinding mill MQG1224 pellets grinding 2
    6 magnetic separator DCIB600*600 magnetic separation 2
    7 sponge iron briquetting machine 10~25 MPa reduced iron powder molding 1
    下载: 导出CSV

    表 4  模拟转底炉各区温度与时间参数

    Table 4.  Simulation parameters of temperature and time in different districts of rotary hearth furnace

    Zone Angle/° Temperature/℃ Time/min
    Preheating zone 75 1 200-1 280 9
    High temperature zone 205 1 280 24
    Cooling zone 20 ≤1 050 2
    Charging and discharging Zone 60 --- 7
    Total 360 --- 42
    下载: 导出CSV

    表 5  转底炉还原各区工艺参数

    Table 5.  Process parameters in the different districtsof rotary hearth furnace

    Process parameters Preheating zone Medium temperature area The first high temperature zone The second high temperature zone The colling zone
    Temperature /℃ 1 250~1 300 1 300~1 330 1 330±20 1 330±20 < 1 100
    CO content /ppm > 10 000 > 30 000 > 40 000 > 40 000
    Pressure/Pa negative pressure positive pressure positive pressure positive pressure positive pressure
    Total run time/ min/r 42
    下载: 导出CSV

    表 6  还原铁粉化学多元素分析 /%

    Table 6.  Multi-elements analysis results of reduction iron powder

    Element TFe MFe SiO2 Al2O3 MgO K2O Na2O Zn S P C
    Content 94.22 90.16 1.57 0.15 1.61 0.03 0.02 0.01 0.06 0.01 0.51
    下载: 导出CSV

    表 7  尾矿化学多元素分析 /%

    Table 7.  Multi-elements analysis results of tailings

    Element TFe MFe SiO2 Al2O3 CaO MgO K2O Na2O Zn S P C
    Content 12.46 2.24 45.32 5.38 5.16 2.33 0.81 0.15 0.01 1.66 0.03 16.92
    下载: 导出CSV
  • [1]

    钟瑞, 张红军.我国铁矿石成本分析及竞争力对策研究[J].矿产保护与利用, 2017 (2):18-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201702004

    [2]

    王嫱, 陈甲斌, 余韵.我国铁矿安全保障的思考及建议[J].矿业研究与开发, 2018, 38(11): 123-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kyyjykf201811024

    [3]

    李艾强, 周文波, 李青青, 等.磁化处理对微细粒赤铁矿絮凝的影响[J].矿产保护与利用, 2018(1):84-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201801015

    [4]

    孙体昌, 秦晓萌, 胡学平, 等.低品位铁矿石直接还原过程铁颗粒生长和解离特性[J].北京科技大学学报, 2011, 33(9):1048-1052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201109002

    [5]

    闫树芳, 孙体昌, 许言.煤种对嘉峪关某菱铁矿直接还原的影响[J].中国有色金属学报, 2012, 22(5):1462-1467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb-e201205030

    [6]

    徐承焱, 孙体昌, 杨慧芬, 等.铁矿直接还原工艺及理论的研究现状及进展[J].矿产保护与利用, 2010(4):48-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201004012

    [7]

    徐承焱, 孙体昌, 寇珏, 等.还原剂对高磷鲕状赤铁矿还原焙烧铁磷分离的影响[J].工程科学学报, 2016, 38(1):26-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201601004

    [8]

    潘建, 鲁胜虎, 朱德庆, 等.菱铁矿直接还原-低阶煤提质一体化扩大试验[J].钢铁研究学报, 2019, 31(4):337-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyjxb201904001

    [9]

    赵立鹏, 李国峰, 张涛, 等.高磷鲕状赤铁矿深度还原过程中磷灰石还原热力学研究[J].矿产保护与利用, 2018(2):58-62, 68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201802010

    [10]

    何威, 曾维伟, 陈向, 等.某菱铁矿石直接还原—弱磁选试验[J].金属矿山, 2019, 513(3):92-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201903014

    [11]

    吕亚男, 郭宇峰, 陈栋.煤基直接还原-球磨磁选分离钒钛磁铁精矿中铁的研究[J].烧结球团, 2016, 41(2):58-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjqt201602013

    [12]

    曹志成.铜渣转底炉直接还原回收铁锌工艺及机理研究[D].北京: 北京科技大学, 2019.

  • 加载中

(6)

(7)

计量
  • 文章访问数:  858
  • PDF下载数:  71
  • 施引文献:  0
出版历程
收稿日期:  2020-03-25

目录