-
摘要:
鄂西高磷鲕状赤铁矿采用细磨-反浮选工艺可有效提铁降杂,实现铁的回收利用。但该工艺产生的废水浊度高,成分复杂,浮选废水回用困难。本研究对该反浮选废水进行了研究,发现废水pH值为9.6,散射浊度为95 780 NTU,悬浮物浓度为1 272 mg/L。采用氧化钙(CaO)与聚丙烯酰胺(PAM)联用混凝沉淀法处理该废水,用量分别为350 mg/L和20 mg/L时,搅拌速率80 r/min搅拌10 min,处理后废水浊度降至19.9 NTU,出水率为80%~90%。通过Zeta电位和扫描电镜研究发现,CaO-PAM的加入,降低了悬浮微细粒间的静电斥力,发生了双电层吸附,通过架桥作用使微细粒发生了絮凝沉淀,从而降低了废水浊度及金属离子含量,满足了废水循环使用的要求,降低了废水外排造成的资源浪费和环境污染危害。
Abstract:It is effective to enrich iron and reduce impurity for high phosphorus oolitic hematite in western Hubei through the process to fine grinding-reverse flotation, which can realize the recovery and utilization of iron. However, the turbidity of wastewater produced by this process was high and its compositions were complex, which makes it difficult to recycle the flotation wastewater. In this paper, the reverse flotation wastewater was studied, and the results showed that the pH value of the wastewater was 9.6, the scattering turbidity was 95 780 NTU, and the suspended matter concentration was 1 272 mg/L. The method of Calcium oxide (CaO) and polyacrylamide (PAM) combined coagulation precipitation was performed to treat the flotation waste water.. The treated wastewater with the turbidity of 19.9 NTU and the effluent rate from 80% to 90% can be obtained when the stirring time is 10 min with the stirring rate of 80 r/min, and the the dosage of CaO and PAM are 350 mg/L and 20 mg/L, respectively. It can be found from the Zeta potential and scanning electron microscopy that the addition of CaO-PAM can reduce the electrostatic repulsion between the suspended fine particles, which leads to the double electric layer adsorption. The fine particles are flocculated and precipitated by the bridging, which reduces the turbidity and metal ion content of waste water. It meets the requirements of recycling wastewater and reduces resource waste and environmental pollution hazards caused by wastewater discharge.
-
-
表 1 鄂西高磷赤铁矿化学多元素成分分析结果
Table 1. Mulit-element analysis of western Hubei high phosphorus oolitic hematite
/% 组分 TFe FeO SiO2 Al2O3 CaO MgO P 含量 47.71 4.30 10.96 5.98 5.52 0.94 0.93 组分 Na2O K2O S Ig TFe/FeO 碱性系数 含量 0.77 0.34 0.03 3.42 11.10 0.41 表 2 反浮选废水水质
Table 2. Quality analysis results of reverse flotation wastewater
水质指标 外观 悬浮物/(mg·L-1) 浊度NTU 总磷/(mg·L-1) CODcr/(mg·L-1) 电导率/(us·cm-1) pH 浮选废水 红色浑浊 1 272 95 780 10.02 2 380 465 9.6 表 3 处理废水正交试验分析表
Table 3. Orthogonal test analysis table of wastewater treatment
因素试验 1氧化钙用量/(mg·L-1) 2聚丙烯酰胺用量/(mg·L-1) 3搅拌时间/min 4搅拌速度/(r·min-1) 出水浊度/NTU 1 250 40 13 80 110.2 2 250 30 10 150 123.8 3 250 20 7 300 228.0 4 300 40 10 300 76.6 5 300 30 7 80 84.2 6 300 20 13 150 22.4 7 350 40 7 150 35.1 8 350 30 13 300 64.0 9 350 20 10 80 19.9 K1 154.00 73.97 65.53 71.43 K2 61.07 90.67 73.43 60.43 K3 39.67 90.10 115.77 122.87 R 114.33 16.70 50.24 52.44 表 4 不同水质物化常数指标对比结果
Table 4. Comparison results of different physicochemical constant water quality index
水质水样 外观 悬浮物/(mg·L-1) 浊度/NTU 全磷/(mg·L-1) CODcr/(mg·L-1) pH值 电导率/(μS·cm-1)* 原废水 红色浑浊 1 272 95 780 10.02 2 380 9.6 465 处理后废水 无色澄清 38.3 19.9 0.32 59 12.5 1 104 自来水 无色澄清 未检出 0.33 未检出 未检出 7.8 150 回水要求 - < 100 < 1 <0.5 <200 6~9 - 西门子:1 S=1 s3·A2/(kg·m2)。 表 5 废水中部分金属含量分析
Table 5. Analysis of the metal content in the waste water
离子 Ca2+ Mg2+ Al3+ Fe2+/Fe3+ 处理前废水/(mg·L-1) 101.94 41.76 48.54 75.45 处理后废水/(mg·L-1) 58.34 1.45 8.83 24.55 -
[1] OMRAN M, FABRITIUS T, MATTILA R. . Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces[J]. Powder Technology, 2015, 269: 7-14. doi: 10.1016/j.powtec.2014.08.073
[2] YU Y, FENG Q. Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(2): 177-182. doi: 10.1007/s11595-011-0192-6
[3] LUO L, ZHANG H. Process mineralogy and characteristic associations of iron and phosphoros-based minerals on oolitic hematite[J]. Cent. South Univ, 2017(24): 1956-1967. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBDX201312024.htm
[4] ZHANG H, ZHANG Z, LUO L, YU H. Behavior of Fe and P during reduction magnetic roasting separation of phosphorus-rich oolitic hematite[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(1): 47-64. doi: 10.1080/15567036.2018.1496195
[5] 董怡斌, 强敏, 段正义, 等. QD捕收剂对鄂西高磷鲕状赤铁矿的反浮选效果[J]. 金属矿山, 2010(2): 62-65+136. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201002015.htm
[6] 唐云, 刘安荣, 杨强, 张覃. 贵州赫章鲕状赤铁矿选矿试验研究[J]. 金属矿山, 2011(1): 48-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201101012.htm
[7] 王兢, 尚衍波, 张覃. 鲕状赤铁矿浮选试验初步研究[J]. 矿冶工程, 2004(3): 38-41. doi: 10.3969/j.issn.0253-6099.2004.03.012
[8] 赵海涛. 湘西某鲕状赤铁矿选矿试验研究[J]. 矿冶工程, 2014, 3(3): 40-43. doi: 10.3969/j.issn.0253-6099.2014.03.012
[9] 高野, 李志锋, 高杨. 某鲕状赤铁矿反浮选降硅正交试验研究[J]. 矿产保护与利用, 2014(6): 28-31. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0b0c5110-6eee-4a8c-be7a-6ffd5403f938
[10] ZHANG H, WANG F. Analysis of surface wWettability of synthetic magnetite[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2014, 29(4): 679-683. doi: 10.1007/s11595-014-0979-3
[11] 石敏, 孙春宝, 李明颖, 等. 高浊度钼矿浮选废水的混凝沉淀[J]. 环境工程学报, 2013, 7(1): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201301046.htm
[12] 余波, 王国栋, 曾波, 等. 鄂西某高磷鲕状赤铁矿选矿废水回收处理研究[J]. 云南化工, 2013, 40(3): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201303003.htm
[13] 许明鑫, 孙水裕, 戴文灿, 等. 络合沉淀结合混凝法去除浮选废水中有机磷[J]. 环境工程学报, 2014, 8(12): 5367-5371. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201412052.htm
[14] 李晔, 刘跃, 左慧, 等. 混凝沉淀法处理磷矿浮选废水试验研究[J]. 工业安全与环保, 2009, 35(4): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF200904003.htm
[15] 黄筱迪. 混凝沉淀法处理磷矿选矿废水及回用试验研究[D]. 贵阳: 贵州大学, 2016.
-