Research on Process and Mechanism of Magnetization Roasting by Straw Biomass for Hematite
-
摘要:
磁化焙烧—磁选工艺是实现铁矿富集的有效手段,生物质作为一种低污染、分布广泛、储量丰富的资源可以进行热化学转化制取磁化焙烧过程中所需的还原剂。本研究采用秸秆型生物质对赤铁矿进行磁化焙烧,通过试验,确定了焙烧温度750 ℃、焙烧时间7.5 min、生物质质量配比20%、气体流量300 mL/min的最佳焙烧工艺参数,取得了铁精矿TFe品位超过71.0%、回收率超过99.5%的优良指标。XRD、VSM、SEM检测结果显示:赤铁矿特征衍射峰转化为磁铁矿特征衍射峰,单位质量磁矩超过1 500 A·m2/g,最大比磁化系数达到0.26×10-3 m3/kg,实现了由赤铁矿到磁铁矿的物相转变。研究验证了秸秆型生物质作为赤铁矿磁化焙烧还原剂的可行性,为我国秸秆资源和铁矿石资源的利用提供了一种有效途径。
Abstract:Magnetic roasting-magnetic separation process is considered as a feasible solution to separate iron mine. Because of its characters of low-pollution, widely distributed and resource-rich, biomass can be transformed in a thermochemical way to reductant applying in magnetizing roast. This research utilizes hematite and straw biomass to carry magnetization roasting experiment. Under conditions of 750 degrees C, roasting time of 7.5 min, iron ore and biomass dosing of 10:2, pure nitrogen with 300 mL/min, this research acquires index of iron concentrate with grade of more than 71.0% and recovery of more than 99.5%. Test results of XRD, VSM, SEM show that specific diffractive peak of hematite transforms into specific diffractive peak of magnetite, while magnetic moment per unit mass reaches more than 1 500 A·m2/g and the maximum of special magnetization coefficient achieves 0.26×10-3 m3·kg-1. It verifies the feasibility of straw biomass as a magnetized roasting reducing agent, providing an effective solution to utilization of straw and iron resources.
-
Key words:
- hematite /
- magnetizing roasting /
- biomass /
- phase transformation
-
-
表 1 元素分析结果
Table 1. The results of multi-element analysis
/% 成分 TFe FeO SiO2 Al2O3 CaO MgO P S 烧失 含量 67.51 0.53 1.16 0.47 < 0.05 0.11 0.035 0.013 1.94 表 2 铁物相分析结果
Table 2. The results of multi-element analysis
/% 成分 磁性铁(mFe) 碳酸铁(cFe) 赤褐铁(oFe) 硫化铁(sfFe) 硅酸铁(siFe) 全铁(TFe) 含量 1.6 0.05 65.53 0, 18 0.28 67.51 分布率 2.37 0.07 96.87 0.27 0.41 100.00 表 3 工业分析结果
Table 3. The results of industrial analysis
/% 成分 水分 灰分 挥发分 固定碳 空气干燥基 6.26 3.58 73.81 16.35 干燥基 - 3.82 78.74 17.44 干燥无灰基 - - 81.77 18.13 表 4 元素分析结果
Table 4. The results of element analysis
/% 成分 N H S N O 空气干燥基 42.56 5.60 0.12 0.44 41.44 干燥基 45.40 5.97 0.13 0.47 44.21 干燥无灰基 47.20 6.21 0.13 0.49 45.96 表 5 EDS能谱元素质量分析结果
Table 5. Results of EDS elemental mass analysis
序号 元素质量/% n(O)/n(Fe) 铁 氧 总计 1 70.12 29.88 100.00 1.491 2 72.36 27.64 100.00 1.337 3 72.52 27.48 100.00 1.326 -
[1] 王海军, 张国华. 我国铁矿资源勘查现状及供需潜力分析[J]. 中国国土资源经济, 2013, 26(11): 35-39. doi: 10.3969/j.issn.1672-6995.2013.11.010
[2] 田祎兰, 刘清高, 任爱军, 等. 铁矿选矿工艺研究现状与发展[A]. 2009年全国复杂难处理矿石选矿技术学术会议, 2009: 6.
[3] 阎赞, 李丽匣, 袁致涛, 等. 含碳酸盐铁矿石选别技术现状及发展趋势[J]. 矿产保护与利用, 2015(1): 69-74. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b46f8c9d-04b8-4c48-8e7e-fc44033376f0
[4] 卢延纯, 赵公正, 左更, 等. 破解铁矿石价格困境构建钢铁产业新发展格局[J]. 价格理论与实践. DOI:10.19851/j.cnki.CN11-1010/F.2021.01.01.
[5] 袁博, 王国平, 李钟山, 等. 我国进口铁矿石定价权缺失的原因和对策建议[J]. 中国矿业, 2017, 26(10): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201710019.htm
[6] 王秋林, 陈雯, 余永富, 等. 难选铁矿石磁化焙烧机理及闪速磁化焙烧技术[J]. 金属矿山, 2009(12): 73-76. doi: 10.3321/j.issn:1001-1250.2009.12.020
[7] 李艳军, 余建文, 韩跃新, 等. 难选铁矿石流态化磁化焙烧研究新进展[J]. 金属矿山, 2019(2): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902003.htm
[8] 屈万刚, 陈铁军, 张一敏. 镜铁矿粉矿制粒回转窑磁化焙烧及分选研究[J]. 矿产保护与利用, 2016(6): 26-30+36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6964c8e2-4318-48ba-89b9-d59d1cd0bb04
[9] SUN Y, ZHU X, HAN Y, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study[J]. Journal of Cleaner Production, 2020, 261: 121221. http://www.sciencedirect.com/science/article/pii/S0959652620312683
[10] 陈雯, 余永富, 冯志力, 等. 60万t/a难选菱(褐)铁矿闪速磁化焙烧成套技术与装备[J]. 金属矿山, 2017(3): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201703012.htm
[11] 耿爱欣, 潘文琦, 杨红强. 中国林木生物质能源替代煤炭的减排效益评估[J]. 资源科学, 2020, 42(3): 536-547. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202003012.htm
[12] 全浩, 任延杰, 李香香. 关于有机废物类生物质能历史定位及其能源价值评估指标探讨[J]. 环境与可持续发展, 2012, 37(3): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKD201203008.htm
[13] 张世鑫, 陈明光, 吴陈亮, 等. 生物质利用技术进展[J]. 中国资源综合利用, 2019, 37(4): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201904024.htm
[14] 张士元, 冯雅丽, 李浩然. 生物质磁化焙烧赤铁矿的研究[J]. 矿业工程, 2016, 14(4): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS201604013.htm
[15] 黄玥, 陈海斌, 蒙李燕, 等. 木屑对铁尾矿磁化焙烧磁选工艺的影响[J]. 环境工程学报, 2020, 14(11): 3147-3154. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202011026.htm
[16] GUO D, LI Y, CUI B, et al. Direct reduction of iron ore/biomass composite pellets using simulated biomass-derived syngas: Experimental analysis and kinetic modelling[J]. Chemical Engineering Journal, 2017, 327: 822-830. http://www.sciencedirect.com/science/article/pii/S1385894717310653
[17] ABD RASHId R, YUNUS N A, SALLEH H, et al. Enhancement of magnetic properties of malaysian iron ore by reduction roasting using oil palm empty fruit bunch[J]. ISIJ International, 2014, 54: 994-996. http://ci.nii.ac.jp/naid/130004734504
[18] RATH S S, RAO D S, TRIPATHY A, et al. Biomass briquette as an alternative reductant for low grade iron ore resources[J]. Biomass and Bioenergy, 2018, 108: 447-454. http://www.sciencedirect.com/science/article/pii/S0961953417303616
[19] WARREN T, POULTER R, PARFITT R. Converting biomass to electricity on a farm-sized scale using downdraft gasification and a spark-ignition engine[J]. Bioresource Technology, 1995, 52: 95-98. http://www.sciencedirect.com/science/article/pii/0960852495000227
[20] 张汉泉, 余永富, 陈雯. 大冶铁矿强磁选精矿磁化焙烧热力学研究[J]. 钢铁, 2007(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200704002.htm
[21] 陈超, 张裕书, 杨强. 难选铁矿磁化焙烧热力学研究[J]. 矿产保护与利用, 2013(5): 31-34. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=63b2b7cc-c2ae-406b-bb35-e5eb3b01e554
-