高钙高铁煤渣处置含砷污酸的除砷行为及机理

周佳艺, 杜勃雨, 祝星, 李孔斋, 魏永刚. 高钙高铁煤渣处置含砷污酸的除砷行为及机理[J]. 矿产保护与利用, 2021, 41(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2021.03.001
引用本文: 周佳艺, 杜勃雨, 祝星, 李孔斋, 魏永刚. 高钙高铁煤渣处置含砷污酸的除砷行为及机理[J]. 矿产保护与利用, 2021, 41(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2021.03.001
ZHOU Jiayi, DU Boyu, ZHU Xing, LI Kongzhai, WEI Yonggang. Behaviour and Mechanism of Arsenic Removal From High-arsenic Waste Acid Using Ca/Fe-enriched Coal Slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2021.03.001
Citation: ZHOU Jiayi, DU Boyu, ZHU Xing, LI Kongzhai, WEI Yonggang. Behaviour and Mechanism of Arsenic Removal From High-arsenic Waste Acid Using Ca/Fe-enriched Coal Slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2021.03.001

高钙高铁煤渣处置含砷污酸的除砷行为及机理

  • 基金项目:
    云南省"高层次人才培养支持计划"青年拔尖人才专项(YNWR-QNBJ-2018-398)
详细信息
    作者简介: 周佳艺(1995-), 女, 辽宁鞍山人, 硕士研究生
    通讯作者: 祝星(1984-), 男, 湖北黄冈人, 博士、教授、博士生导师, 主要从事环境污染控制和可持续能源技术研究, E-mail: zhuxing2010@hotmail.com
  • 中图分类号: X752

Behaviour and Mechanism of Arsenic Removal From High-arsenic Waste Acid Using Ca/Fe-enriched Coal Slag

More Information
  • 针对重有色冶炼过程中的污酸处置长期存在危废产量大、环境成本高等难题,本文提出一种绿色工艺,结合高铁高钙煤渣特征,提出了高铁高钙煤渣无害化处置含砷污酸的新思路,达到去除污酸中砷离子且生成稳定含砷化合物的目的。研究了污酸与高铁高钙煤渣的在不同条件(加入量、反应时间、初始pH)的反应行为,并借助材料分析手段揭示了除砷机理。结果表明燃煤渣富含钙和铁氧化物,煤渣与污酸具有良好的反应效果和除砷作用。燃煤渣用于污酸除砷,最高除砷率可达98.31%,除砷能力最高可达82.52 mg/g,随着反应时间增加除砷效率和沉淀物稳定性明显提高。初始pH=0.98时,除砷效果最好,并且随着pH升高显著下降。煤渣中氧化铁溶于污酸,释放Fe3+,在氧化条件下沉淀砷酸根离子生成无定形砷酸铁,而后在Si、Al和Ca氧化物保护下,达到除砷固砷目的,形成浸出毒性低于5 mg/L的富砷沉淀渣。

  • 加载中
  • 图 1  煤渣的XRD图

    Figure 1. 

    图 2  (a) 不同加入量条件下剩余溶液含砷量及砷脱除率; (b)不同加入量条件下沉砷反应结果TCLP; (c)不同加入量条件下的XRD; (d)不同加入量下最终pH值(温度为25 ℃,时间为12 h)

    Figure 2. 

    图 3  (a) 不同反应时间条件下剩余溶液含砷量及砷脱除率;(b)不同反应时间条件下的毒性浸出图(TCLP);(c)不同反应时间条件下的XRD图;(d)不同反应时间下最终pH值(煤渣加入量为10 g,温度为25 ℃)

    Figure 3. 

    图 4  (a) 不同初始pH条件下剩余溶液含砷量及砷脱除率图;(b)不同反应时间条件下的毒性浸出图(TCLP);(c)不同初始pH下的XRD图;(d)不同pH下最终pH值(温度为25 ℃;反应时间为9 h)

    Figure 4. 

    图 5  含砷沉淀物的SEM-EDS图

    Figure 5. 

    表 1  污酸成分

    Table 1.  Chemical composition of waste acid  /(mg·L-1)

    Element As Zn Sb Fe Cu Mg Pb Cr H2SO4
    Content 7 000.0 21.2 9.3 17.5 24.6 11.3 4.5 0.7 64 000.0
    下载: 导出CSV

    表 2  煤渣的成分含量

    Table 2.  Composition of honeycomb cinde  /%

    SiO2 Al2O3 Fe2O3 MnO SO3 K2O CaO TiO2 其他
    40.59 15.57 16.09 0.98 1.05 1.78 14.96 2.33 4.32
    下载: 导出CSV
  • [1]

    ADAMCZUK A, KOLODYNSKA D. Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan [J]. Chemical Engineering Journal, 2015, 274: 200-212. doi: 10.1016/j.cej.2015.03.088

    [2]

    WAN P, YUAN M, YU X, et al. Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks [J]. Chemical Engineering Journal, 2020, 382: 122921. doi: 10.1016/j.cej.2019.122921

    [3]

    CUONG D V, WU P-C, CHEN L-I, et al. Active MnO2/biochar composite for efficient As(Ⅲ) removal: Insight into the mechanisms of redox transformation and adsorption [J]. Water Research, 2020, 188: 116495.

    [4]

    MANI P, KIM Y, LAKHERA S K, et al. Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon [J]. ChemospHere, 2021, 277: 130225. doi: 10.1016/j.chemosphere.2021.130225

    [5]

    ZENG Q, ZHONG H, HE Z, et al. Efficient removal of arsenite by a composite of amino modified silica supported MnO2/Fe-Al hydroxide (SNMFA) prepared from biotite [J]. Journal of environmental management, 2021, 291: 112678. doi: 10.1016/j.jenvman.2021.112678

    [6]

    GOSWAMI A, RAUL P K, PURKAIT M K. Arsenic adsorption using copper (Ⅱ) oxide nanoparticles [J]. Chemical Engineering Research and Design, 2012, 90(9): 1387-1396. doi: 10.1016/j.cherd.2011.12.006

    [7]

    HASSAN A F, ABDEL-MOHSEN A M, ELHADIDY H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads [J]. Int J Biol Macromol, 2014, 68: 125-130. doi: 10.1016/j.ijbiomac.2014.04.006

    [8]

    LI Y, QI X, LI G, et al. Double-pathway arsenic removal and immobilization from high arsenic-bearing wastewater by using nature pyrite as in situ Fe and S donator [J]. Chemical Engineering Journal, 2021, 410: 128303. doi: 10.1016/j.cej.2020.128303

    [9]

    DE KLERK R J, FELDMANN T, DAENZER R, et al. Continuous circuit coprecipitation of arsenic(Ⅴ) with ferric iron by lime neutralization: The effect of circuit staging, co-ions and equilibration pH on long-term arsenic retention [J]. Hydrometallurgy, 2015, 151: 42-50. doi: 10.1016/j.hydromet.2014.11.003

    [10]

    ZHANG S-L, JIA S-Y, YU B, et al. Sulfidization of As(Ⅴ)-containing schwertmannite and its impact on arsenic mobilization [J]. Chemical Geology, 2016, 420: 270-279. doi: 10.1016/j.chemgeo.2015.11.020

    [11]

    GIERE R, SIDENKO N V, LAZAREVA E V. The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia) [J]. Applied Geochemistry, 2003, 18(9): 1347-1359. doi: 10.1016/S0883-2927(03)00055-6

    [12]

    KEMPAHANUMAKKAGARI S, DEEP A, KIM K-H, et al. Nanomaterial-based electrochemical sensors for arsenic- A review [J]. Biosensors & Bioelectronics, 2017, 95: 106-116.

    [13]

    MALEKPOUR A, KHODADADI M. Albumin-functionalized magnetic nanoparticles as an efficient sorbent for removal of Pb(Ⅱ), Cd(Ⅱ), Cu(Ⅱ) and Cr(Ⅵ) ions from aqueous solutions [J]. Rsc Advances, 2016, 6(18): 14705-14711. doi: 10.1039/C5RA22600G

    [14]

    SALDANA ROBLES A, SALDANA ROBLES N, SALDANA ROBLES A L, et al. Arsenic removal from aqueous solutions and the impact of humic and fulvic acids [J]. Journal of Cleaner Production, 2017, 159: 425-431. doi: 10.1016/j.jclepro.2017.05.074

    [15]

    SANCHEZ J, BUTTER B, CHAVEZ S, et al. Quaternized hydroxyethyl cellulose ethoxylate and membrane separation techniques for arsenic removal [J]. Desalination and Water Treatment, 2016, 57(52): 251619.

    [16]

    ZHANG L, CHEN S, WANG L, et al. Application of Membrane Separation Technology in Wastewater Treatment of Iron and Steel Enterprise [M]//IKHMAYIES S, LI B, CARPENTER J S, et al. Characterization of Minerals, Metals, and Materials, 2017. 2017: 545-551.

    [17]

    ZHOU J, XU H, TONG Z, et al. Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar [6] arene as a strategy to construct the "compound vesicles" for controlled drug delivery [J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 237-244. doi: 10.1016/j.msec.2018.04.010

    [18]

    XI Y, ZOU J, LUO Y, et al. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron [J]. Chemical Engineering Journal, 2019, 375: 121928. doi: 10.1016/j.cej.2019.121928

    [19]

    XI Y, ZOU J, LUO Y, et al. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron [J]. Chemical Engineering Journal, 2019, 375: 121928. doi: 10.1016/j.cej.2019.121928

    [20]

    易求实. 三段石灰-铁盐法处理高砷洗气污酸废水[J]. 湖北第二师范学院学报, 2011, 28(8): 24-26. doi: 10.3969/j.issn.1674-344X.2011.08.009

    [21]

    OCINSKI D, JACUKOWICZ-SOBALA I, MAZUR P, et al. Water treatment residuals containing iron and manganese oxides for arsenic removal from water-Characterization of physicochemical properties and adsorption studies [J]. Chemical Engineering Journal, 2016, 294: 210-221. doi: 10.1016/j.cej.2016.02.111

    [22]

    邓凡政, 何家红. 煤渣除砷性能研究[J]. 环境科学与技术, 1995(3): 22-23, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS503.005.htm

    [23]

    李娟, 刘新春, 余志晟, 等. 煤渣吸附水中氟和砷的研究[J]. 中国科学院大学学报, 2014, 31(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201404005.htm

    [24]

    SARKAR C, BASU J K, SAMANTA A N. Removal of Ni2+ ion from waste water by Geopolymeric Adsorbent derived from LD Slag [J]. Journal of Water Process Engineering, 2017, 17: 237-244. doi: 10.1016/j.jwpe.2017.04.012

    [25]

    JIN Z, ALI B S, TIANTIAN S, et al. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions [J]. Journal of hazardous materials, 2015, 286: 220-228. doi: 10.1016/j.jhazmat.2015.01.004

    [26]

    中国环境科学研究院固体废物污染控制技术研究所, 环境标准研究所. 危险废物鉴别标准浸出毒性鉴别[Z]. 中华人民共和国国家标准. 2007: 180p: A4

    [27]

    GUO Z, PAN J, ZHU D, et al. Mechanism of composite additive in promoting reduction of copper slag to produce direct reduction iron for weathering resistant steel [J]. Powder Technology, 2018, 329: 55-64. doi: 10.1016/j.powtec.2018.01.063

    [28]

    XIAO HONG G, TINGZHI S, JIANMIN W. Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model [J]. Journal of hazardous materials, 2009, 166(1): 39-45. doi: 10.1016/j.jhazmat.2008.10.121

    [29]

    CHUANYONG J, SUQIN L, XIAOGUANG M. Arsenic leachability and speciation in cement immobilized water treatment sludge [J]. Chemosphere, 2005, 59(9): 1241-1247. doi: 10.1016/j.chemosphere.2004.11.039

    [30]

    WANG S, ZHANG D, LI X, et al. Arsenic associated with gypsum produced from Fe(Ⅲ)-As(Ⅴ) coprecipitation: Implications for the stability of industrial As-bearing waste [J]. Journal of Hazardous Materials, 2018, 360: 311-318. doi: 10.1016/j.jhazmat.2018.08.017

    [31]

    CHAI L, YANG J, ZHANG N, et al. Structure and spectroscopic study of aqueous Fe(Ⅲ)-As(Ⅴ) complexes using UV-Vis, XAS and DFT-TDDFT[J]. Chemosphere, 2017, 182: 595-604. doi: 10.1016/j.chemosphere.2017.05.018

    [32]

    YANG J, CHAI L, YUE M, et al. Complexation of arsenate with ferric ion in aqueous solutions [J]. Rsc Advances, 2015, 5(126): 103936-103942. doi: 10.1039/C5RA21836E

    [33]

    MARINKOV N, MARKOVA-VELICHKOVA M, GYUROV S, et al. Preparation and characterization of silicagel from silicate solution obtained by autoclave treatment of copper slag [J]. Journal of Sol-Gel Science and Technology, 2018, 87(2): 331-339. doi: 10.1007/s10971-018-4741-8

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1613
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2021-06-10
刊出日期:  2021-06-25

目录