Property of Bayan Obo Rare Earth Concentrate and Its Influence on the Leaching Rate of Roasted Ore
-
摘要:
由于白云鄂博原矿性质的不断变化,稀土精矿的性质也随之改变,从而影响后续冶炼工艺REO的收率。通过化学多元素、粒度、配分、化学物相和矿物组成分析对白云鄂博稀土精矿的性质进行了研究,并考察了粒度、REO品位、铁磷比等因素对稀土精矿焙烧浸出的影响。结果表明: 白云鄂博品位REO 53.11%的稀土精矿中主要的杂质元素为CaO、P2O5、F、TFe和SiO2,REO在-30 μm粒级中分布率为90.24%,镧、铈、镨、钕轻稀土配分合量为97.89%,主要稀土矿物为氟碳铈矿和独居石;当稀土精矿的粒度变细和水浸温度、REO品位及铁磷比增加时,均有助于提高焙烧矿REO浸出率,适宜的矿酸比为1:(1.3~1.4),适宜的铁磷比为3:1~4:1。本研究查明了白云鄂博稀土精矿的性质,为后续冶炼工艺的优化提供了理论参考依据。
Abstract:Due to the continuous changes in the nature of the Bayan Obo raw ore, the physical properties of the rare earth concentrate have also changed, which affects the REO recovery rate of subsequent smelting process. The physical properties of Bayan Obo rare earth concentrate were studied through chemical multi-element, particle size, distribution, chemical phase and mineral composition analysis, and the influence of factors such as particle size, REO grade, iron and phosphorus ratio on the roasting and leaching of rare earth concentrate was investigated. The results show that the main impurity elements in the 53.11% rare earth concentrate of Bayan Obo are CaO, P2O5, F, TFe and SiO2, the distribution rate of REO in the -30 μm particle size is 90.24%, the light rare earths proportion of lanthanum, cerium, praseodymium and neodymium is 97.89% totally, and the main rare earth minerals are bastnaesite and monazite; when the particle size of the rare earth concentrate becomes finer and the water immersion temperature, REO grade and iron-phosphorus ratio increase, All help to increase the REO leaching rate of roasted ore, the suitable mineral-acid ratio is 1:1.3~1.4, and the suitable iron-phosphorus ratio is 3:1~4:1. This study has ascertained the physical properties of the Bayan Obo rare earth concentrate, which provides a theoretical reference for the optimization of the subsequent smelting process.
-
Key words:
- Bayan Obo /
- rare earth concentrate /
- roasting /
- leaching rate
-
-
表 1 稀土精矿的化学多元素分析
Table 1. Chemical multi-element analysis of rare earth concentrate
/% Element REO CaO P2O5 F TFe SiO2 Na2O K2O MgO Content 53.11 9.93 11.55 6.58 4.21 2.01 0.21 0.031 0.30 Element TiO2 BaO ThO2 Nb2O5 Al2O3 Sc2O3 S MnO2 MFe Content 0.38 1.35 0.23 0.061 0.20 < 0.005 0.43 0.70 < 0.50 表 2 稀土精矿的粒度分析
Table 2. Particle size analysis of rare earth concentrate
/% Size fraction1) Yield REO REO distribution rate Cumulative yield +74 3.08 5.96 0.34 3.08 -74+53 3.08 8.02 0.47 6.16 -53+45 3.47 20.99 1.37 9.63 -45+37 3.49 31.18 2.23 13.42 -37+30 6.49 43.81 5.35 19.91 -30 80.09 59.84 90.24 100.00 合计 100.00 53.11 100.00 Note: 1) the unit is μm。 表 3 稀土精矿的配分分析
Table 3. Partition analysis of rare earth concentrate
/% Element REO Y2O3 La2O3 CeO2 Pr6O11 Nd2O3 Sm2O3 Eu2O3 Content 53.11 0.24 27.27 51.03 4.93 14.66 1.06 0.20 Element Gd2O3 Tb4O7 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3 Content 0.36 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 表 4 稀土精矿的化学物相分析
Table 4. Chemical phase analysis of rare earth concentrate
/% Phase type REO REO-F* REO-P* REO-F distribution rate REO-P distribution rate Content 53.11 35.22 17.89 66.32 33.68 Note: REO-F* and REO-P*: respectively indicate acid-soluble and acid-insoluble REO content; acid-soluble REO is mainly fluorocarbonate rare earth minerals, and acid-insoluble REO is mainly phosphate rare earth minerals. 表 5 稀土精矿的矿物组成分析
Table 5. Mineral composition of analysis of rare earth concentrate
/% Mineral name Content Mineral name Content Bastnaesite 54.78 Columbite 0.04 Monazite 24.64 Ilmenorutile 0.02 Parisite 1.25 Fergusonite 0.03 Huanghoite 1.07 Pyroxene 0.04 Pyrochlore 0.02 Mica 0.06 Aeschynite 0.04 Dolomite 0.72 Fluorite 2.09 Calcite 0.15 Siderite 0.04 Magnetite/hematite 1.57 Pyrite 6.36 Molybdenite 0.01 Pyrrhotite 0.08 Amphibole 0.12 Ilmenite 0.18 Apatite 4.72 Rhodochrosite 0.03 Barite 0.52 Galena 0.69 other 0.69 Sphalerite 0.04 表 6 常温(20 ℃)水浸时不同粒度焙烧矿的浸出率*
Table 6. The leaching rate of roasted ore with different particle size under the condition of water immersion at room temperature (20 ℃)
/% Grain size (-30 μm) Product name REO Al2O3 Fe2O3 P2O5 REO leaching rate 76.67 Aqueous extracts 18.20 0.0011 0.11 0.14 96.73 Leaching residue 3.20 0.83 9.29 11.59 96.90 Aqueous extracts 17.92 0.0013 0.13 0.12 96.88 Leaching residue 3.07 1.11 10.91 11.52 *:The content of each element in the water immersion liquid is g/L, the same below. 表 7 50 ℃水浸时不同粒度焙烧矿的浸出率*
Table 7. The leaching rate of roasted ore with different particle size under the condition of water immersion at 50 ℃
/% Grain size (-30 μm) Product name REO Al2O3 Fe2O3 P2O5 REO leaching rate 76.67 Aqueous extracts 21.70 0.12 0.90 0.18 97.50 Leaching residue 3.20 0.48 7.19 12.92 96.90 Aqueous extracts 20.86 0.12 1.40 0.20 97.90 Leaching residue 2.73 0.52 5.92 12.73 表 8 不同品位焙烧矿的浸出率
Table 8. The leaching rate of roasted ores with different grade
/% Rare earth concentrate Aqueous extracts REO leaching rate REO Fe2O3 P2O5 SiO2 REO F H+2) 50.76 3.82 11.49 0.25 25.92 0.42 0.23 81.50 58.37 2.42 12.19 0.24 28.65 0.36 0.26 85.07 Note: 2): mol/L. 表 9 矿酸比对不同品位焙烧矿浸出率的影响
Table 9. The effect of ore acid ratio on leaching rate of roasted ore with different grade
/% Ore acid ratio REO REO leaching rate Rare earth concentrate Aqueous extracts 1 : 1.1 58.37 33.20 72.41 1 : 1.2 31.25 71.76 1 : 1.3 31.12 85.86 1 : 1.4 27.96 85.28 1 : 1.5 25.70 85.20 1 : 1.1 50.76 28.38 67.93 1 : 1.2 27.95 78.18 1 : 1.3 25.98 75.04 1 : 1.4 24.44 82.28 1 : 1.5 22.02 81.82 表 10 不同铁磷比焙烧矿的浸出率*
Table 10. The leaching rate of roasted ore with different iron phosphorus ratio
/% Iron phosphorus ratio Mass3) Aqueous extracts Leaching residue REO leaching rate Roasted ore Leaching residue Volume4) REO REO TFe 1 : 1.5 162.32 32.41 1.50 33.62 1.37 5.54 99.13 1.5 : 1 172.93 50.30 1.38 39.94 1.24 10.70 98.89 2 : 1 180.76 50.65 1.44 40.61 1.56 10.55 98.67 3 : 1 214.96 55.70 1.74 37.95 0.73 8.92 99.39 4 : 1 214.90 56.44 1.70 39.61 0.90 15.67 99.25 Note: 3): the unit is g; 4) the unit is L. -
[1] 刘琦, 周芳, 冯健, 等. 我国稀土资源现状及选矿技术进展[J]. 矿产保护与利用, 2019, 39(5): 76-83. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b74c6e75-5f80-4c15-aa86-6e717da34759
[2] 张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202001004.htm
[3] 许俊山, 张越, 赵启东, 等. 某厂生产高品位稀土精矿研究[J]. 现代矿业, 2020, 36(9): 166-167. doi: 10.3969/j.issn.1674-6082.2020.09.045
[4] 于广泉. 白云鄂博特殊矿选矿工艺学[M]. 北京: 冶金工业出版社, 2016: 7-24.
[5] 郭春雷, 侯少春, 王维维. 白云鄂博稀土精矿镨钕配分变化规律研究[J]. 有色金属(选矿部分), 2021(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202101003.htm
[6] 朱智慧, 杨占峰, 王其伟, 等. 白云鄂博稀土精矿工艺矿物学研究[J]. 有色金属(选矿部分), 2019(6): 1-4+22. doi: 10.3969/j.issn.1671-9492.2019.06.001
[7] 王威, 柳林, 刘红召, 等. 稀土资源提取技术进展及趋势[J]. 矿产保护与利用, 2020, 40(5): 32-36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8ce622de-af98-430c-8099-74b18637e593
[8] 郝先库. 稀土湿法冶炼工艺学[M]. 包头: 《稀土》杂志编辑部, 2002: 7+48-50.
[9] 秦玉芳, 李娜, 马莹, 等. 白云鄂博选铁尾矿优先浮选稀土试验研究[J]. 矿冶, 2021, 30(1): 32-37. doi: 10.3969/j.issn.1005-7854.2021.01.007
[10] 池汝安, 王淀佐. 稀土矿物加工[M]. 北京: 科学出版社, 2014: 116-117.
[11] 郭小龙, 白立忠, 孙旭, 等. 活化温度对包头稀土精矿酸浸过程的影响[J]. 中国稀土学报, 2019, 37(5): 583-588. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201905009.htm
[12] 温宗曦, 李梅, 张栋梁, 等. 微波焙烧酸浸高品位混合稀土精矿[J]. 化工矿物与加工, 2019, 48(11): 40-43+47. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201911012.htm
[13] 张晓伟, 李梅, 柳召刚, 等. 包头稀土精矿的配合浸出及动力学[J]. 中国有色金属学报, 2014, 24(8): 2137-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201408026.htm
[14] 陈建利, 柳凌云, 董福柱, 等. 硫酸焙烧分解包头混合稀土精矿添加铁泥的研究[J]. 稀土, 2012, 33(3): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201203023.htm
[15] 王猛, 黄小卫, 冯宗玉, 等. 包头混合型稀土矿冶炼分离过程的绿色工艺进展及趋势[J]. 稀有金属, 2019, 43(11): 1131-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201911002.htm
[16] 杜长顺, 李梅, 柳召刚, 等. 包头稀土精矿处理现状及建议[J]. 湿法冶金, 2010, 29(1): 1-4+28. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201001002.htm
-