电化学脱嵌法盐湖提锂多孔LiFePO4电极的制备

殷睿鑫, 何利华, 唐忠阳, 赵中伟. 电化学脱嵌法盐湖提锂多孔LiFePO4电极的制备[J]. 矿产保护与利用, 2021, 41(3): 155-160. doi: 10.13779/j.cnki.issn1001-0076.2021.03.023
引用本文: 殷睿鑫, 何利华, 唐忠阳, 赵中伟. 电化学脱嵌法盐湖提锂多孔LiFePO4电极的制备[J]. 矿产保护与利用, 2021, 41(3): 155-160. doi: 10.13779/j.cnki.issn1001-0076.2021.03.023
YIN Ruixin, HE Lihua, TANG Zhongyang, ZHAO Zhongwei. Preparation of Porous LiFePO4 Electrode of Electrochemical De-intercalation/intercalation Method for Lithium Extraction from Brine[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 155-160. doi: 10.13779/j.cnki.issn1001-0076.2021.03.023
Citation: YIN Ruixin, HE Lihua, TANG Zhongyang, ZHAO Zhongwei. Preparation of Porous LiFePO4 Electrode of Electrochemical De-intercalation/intercalation Method for Lithium Extraction from Brine[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 155-160. doi: 10.13779/j.cnki.issn1001-0076.2021.03.023

电化学脱嵌法盐湖提锂多孔LiFePO4电极的制备

  • 基金项目:
    国家自然科学基金重点项目(51934010);湖南省自然科学基金面上项目(2019JJ40377);中南大学"创新驱动"人才计划(2020CX026)
详细信息
    作者简介: 殷睿鑫(1996-), 男, 湖南岳阳人, 硕士研究生, 主要从事电化学脱嵌法盐湖提锂研究, E-mail: 183512142@csu.edu.cn
    通讯作者: 何利华(1986-), 男, 江西新余人, 博士, 副教授, 主要从事电化学冶金领域研究, E-mail: helihua@csu.edu.cn 赵中伟(1966-), 男, 河北永年人, 博士, 教授, 主要从事稀有金属冶炼领域研究, E-mail: zhaozw@csu.edu.cn
  • 中图分类号: TF826+.3

Preparation of Porous LiFePO4 Electrode of Electrochemical De-intercalation/intercalation Method for Lithium Extraction from Brine

More Information
  • 电化学脱嵌法盐湖提锂技术因其选择性高、吸附量大、绿色无污染等优点,越来越受到人们的关注,但盐湖卤水矿化度高、黏度大,导致实际提锂速率较低。基于此,以NH4HCO3为造孔剂,制备了具有良好渗透性和传质性能的多孔LiFePO4电极,以改善提锂过程动力学性能。结果表明:造孔改性后电极表面具有微裂纹-微孔的复合结构,可显著强化溶液的传质过程,降低电化学极化。以多孔电极进行电化学脱嵌法提锂,其嵌锂容量由传统电极的25.6 mg(Li)/g(LiFePO4)增加至多孔电极的35.2 mg(Li)/g(LiFePO4),且提锂过程的平均电流密度由8.7 A/m2提高至17.9 A/m2,提锂效率显著提高。此外采用多孔电极循环提锂30次后容量保持率高达98%,表现出良好的循环性能。

  • 加载中
  • 图 1  电极的二维形貌图: (a)未造孔电极,(d)造孔电极;电极的SEM形貌图: (b) 未造孔电极,(e) 造孔电极;电极的三维形貌图: (c) 未造孔电极,(f) 造孔电极

    Figure 1. 

    图 2  (a) 造孔前后电极在0.2 mV/s扫速下的循环伏安曲线,(b) 造孔前后电极在20 A/m2电流密度条件下槽电压随吸附容量变化曲线

    Figure 2. 

    图 3  FePO4电极嵌锂过程中各层的锂铁比值变化曲线: (a) 未造孔电极,(b) 造孔后电极;(c) 未造孔电极嵌锂结束后各层电极材料的XRD分析

    Figure 3. 

    图 4  (a) 电解过程中电极吸附容量随时间变化曲线,(b) 电解过程中电压和电流变化曲线

    Figure 4. 

    图 5  造孔前后电极的循环性能对比:(a) 槽电压变化曲线;(b) 局部放大图;(c) 吸附容量变化曲线

    Figure 5. 

  • [1]

    邢佳韵, 彭浩, 张艳飞, 等. 世界锂资源供需形势展望[J]. 资源科学, 2015, 37(5): 988-997. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201505016.htm

    [2]

    BATTISTEL A, PALAGONIA M S, BROGIOLI D, et al. Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review[J]. Advanced Materials, 2020, 32(23): 1905440. doi: 10.1002/adma.201905440

    [3]

    PRAMANIK B K, ASIF M B, ROYCHAND R, et al. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration[J]. Chemosphere, 2020, 260. http://www.sciencedirect.com/science/article/pii/S004565352031818X

    [4]

    XU P, HONG J, QIAN X M, et al. Materials for lithium recovery from salt lake brine[J]. Journal of Materials Science, 2020, 56: 1-48. doi: 10.1007/s11003-020-00390-5

    [5]

    陈若葵, 王杜, 谭群英, 等. 磷酸盐沉淀法从低浓度含锂溶液中回收锂的研究[J]. 矿冶工程, 2016, 36(5): 97-99. doi: 10.3969/j.issn.0253-6099.2016.05.025

    [6]

    ZHONG J, LIN S, YU J. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brine[J]. Desalination, 2021, 505. http://www.sciencedirect.com/science/article/pii/S0011916421000540

    [7]

    JI Z Y, YANG F J, ZHAO Y Y, et al. Preparation of titanium-base lithium ionic sieve with sodium persulfate as eluent and its performance[J]. Chemistry Engineering Science, 2017, 328, 768-775. doi: 10.1016/j.cej.2017.07.047

    [8]

    SUN B, ZHANG M, HUANG S, et al. Limiting concentration during batch electrodialysis process for concentrating high salinity solutions: A theoretical and experimental study[J]. Desalination, 2021, 498. http://www.sciencedirect.com/science/article/pii/S0011916420314715

    [9]

    黄江江, 何利华, 唐忠阳. 类锂电池体系在盐湖提锂中的研究进展[J]. 矿产保护与利用, 2020, 40(5): 5-13. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1fef6879-9286-468c-a46e-1532eaa88d07

    [10]

    何利华. 基于"摇椅式"锂离子电池原理的盐湖提锂新工艺及其理论研究[D]. 长沙: 中南大学, 2015.

    [11]

    XU W H, HE L H, ZHAO Z W. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials[J]. Desalination, 2021, 503. http://www.sciencedirect.com/science/article/pii/S0011916421000060

    [12]

    ZHAO Z W, LIU G, JIA H, et al. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2019, 596: 117685. http://www.researchgate.net/publication/337436134_Sandwiched_liquid-membrane_electrodialysis_Lithium_selective_recovery_from_salt_lake_brines_with_high_MgLi_ratio

    [13]

    LIU X H, CHEN X Y, HE L H, et al. Study on extraction of lithium from salt lake brine by membrane electrolysis[J]. Desalination, 2015, 376: 35-40. doi: 10.1016/j.desal.2015.08.013

    [14]

    LIU G, ZHAO Z W, HE L H. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474. http://www.sciencedirect.com/science/article/pii/S0011916419315838

    [15]

    ZHAO Z W, SI X F, LIANG X X, et al. Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/FePO4 structures[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1157-1164. doi: 10.1016/S1003-6326(13)62578-9

    [16]

    SONG Y F, ZHAO Z W. Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques[J]. Separation & Purification Technology, 2018: 206: 335-342. http://www.sciencedirect.com/science/article/pii/S1383586618309316

    [17]

    ZHAO Z W, SI X F, LIU X H, et al. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J]. Hydrometallurgy, 2013, 133: 75-83. doi: 10.1016/j.hydromet.2012.11.013

    [18]

    徐文华, 刘冬福, 何利华, 等. 电化学脱嵌法盐湖提锂电极反应动力学研究[J]. 化工学报, 2021, 72(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202106016.htm

    [19]

    LIU D F, XU W H, XIONG J C, et al. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics[J]. Separation and Purification Technology, 2021, 270.

    [20]

    LIU R, CHEN L, YAO S, et al. Pore-scale study of capacitive charging and desalination process in porous electrodes and effects of porous structures[J]. Journal of Molecular Liquids, 2021, 332. http://www.sciencedirect.com/science/article/pii/S0167732221005894

  • 加载中

(5)

计量
  • 文章访问数:  2625
  • PDF下载数:  145
  • 施引文献:  0
出版历程
收稿日期:  2021-04-27
刊出日期:  2021-06-25

目录