Preparation of Porous LiFePO4 Electrode of Electrochemical De-intercalation/intercalation Method for Lithium Extraction from Brine
-
摘要:
电化学脱嵌法盐湖提锂技术因其选择性高、吸附量大、绿色无污染等优点,越来越受到人们的关注,但盐湖卤水矿化度高、黏度大,导致实际提锂速率较低。基于此,以NH4HCO3为造孔剂,制备了具有良好渗透性和传质性能的多孔LiFePO4电极,以改善提锂过程动力学性能。结果表明:造孔改性后电极表面具有微裂纹-微孔的复合结构,可显著强化溶液的传质过程,降低电化学极化。以多孔电极进行电化学脱嵌法提锂,其嵌锂容量由传统电极的25.6 mg(Li)/g(LiFePO4)增加至多孔电极的35.2 mg(Li)/g(LiFePO4),且提锂过程的平均电流密度由8.7 A/m2提高至17.9 A/m2,提锂效率显著提高。此外采用多孔电极循环提锂30次后容量保持率高达98%,表现出良好的循环性能。
Abstract:Electrochemical de-intercalation/intercalation method for lithium extraction from brine has attracted more and more attention due to the high selectivity, the large adsorption capacity and the pollution-free. However, the high mineralization and viscosity of the brine lead to a lower actual lithium extraction rate. Based on this, NH4HCO3 was used as a pore-former to prepare porous LiFePO4 electrodes with good permeability and mass transfer properties to improve the kinetic performance in the process of lithium extraction. The results showed that there was a composite structure of microcracks-microporosity formed on the surface of the electrode after the modification, which could significantly enhance the mass transfer process of the solution and reduce the electrochemical polarization. After the pore-forming modification, the special capacity of electrode increased from 25.6 mg (Li)/g (LiFePO4) to 35.2 mg (Li)/g (LiFePO4) during the electrochemical de-intercalation/intercalation process, and the average current density increased from 8.7 A/m2 to 17.9 A/m2, indicating the efficiency of lithium extraction has been significantly improved. In addition, the electrode exhibited good cycling performance with a capacity retention rate of 98% for 30 cycles.
-
-
[1] 邢佳韵, 彭浩, 张艳飞, 等. 世界锂资源供需形势展望[J]. 资源科学, 2015, 37(5): 988-997. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201505016.htm
[2] BATTISTEL A, PALAGONIA M S, BROGIOLI D, et al. Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review[J]. Advanced Materials, 2020, 32(23): 1905440. doi: 10.1002/adma.201905440
[3] PRAMANIK B K, ASIF M B, ROYCHAND R, et al. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration[J]. Chemosphere, 2020, 260. http://www.sciencedirect.com/science/article/pii/S004565352031818X
[4] XU P, HONG J, QIAN X M, et al. Materials for lithium recovery from salt lake brine[J]. Journal of Materials Science, 2020, 56: 1-48. doi: 10.1007/s11003-020-00390-5
[5] 陈若葵, 王杜, 谭群英, 等. 磷酸盐沉淀法从低浓度含锂溶液中回收锂的研究[J]. 矿冶工程, 2016, 36(5): 97-99. doi: 10.3969/j.issn.0253-6099.2016.05.025
[6] ZHONG J, LIN S, YU J. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brine[J]. Desalination, 2021, 505. http://www.sciencedirect.com/science/article/pii/S0011916421000540
[7] JI Z Y, YANG F J, ZHAO Y Y, et al. Preparation of titanium-base lithium ionic sieve with sodium persulfate as eluent and its performance[J]. Chemistry Engineering Science, 2017, 328, 768-775. doi: 10.1016/j.cej.2017.07.047
[8] SUN B, ZHANG M, HUANG S, et al. Limiting concentration during batch electrodialysis process for concentrating high salinity solutions: A theoretical and experimental study[J]. Desalination, 2021, 498. http://www.sciencedirect.com/science/article/pii/S0011916420314715
[9] 黄江江, 何利华, 唐忠阳. 类锂电池体系在盐湖提锂中的研究进展[J]. 矿产保护与利用, 2020, 40(5): 5-13. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1fef6879-9286-468c-a46e-1532eaa88d07
[10] 何利华. 基于"摇椅式"锂离子电池原理的盐湖提锂新工艺及其理论研究[D]. 长沙: 中南大学, 2015.
[11] XU W H, HE L H, ZHAO Z W. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials[J]. Desalination, 2021, 503. http://www.sciencedirect.com/science/article/pii/S0011916421000060
[12] ZHAO Z W, LIU G, JIA H, et al. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2019, 596: 117685. http://www.researchgate.net/publication/337436134_Sandwiched_liquid-membrane_electrodialysis_Lithium_selective_recovery_from_salt_lake_brines_with_high_MgLi_ratio
[13] LIU X H, CHEN X Y, HE L H, et al. Study on extraction of lithium from salt lake brine by membrane electrolysis[J]. Desalination, 2015, 376: 35-40. doi: 10.1016/j.desal.2015.08.013
[14] LIU G, ZHAO Z W, HE L H. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474. http://www.sciencedirect.com/science/article/pii/S0011916419315838
[15] ZHAO Z W, SI X F, LIANG X X, et al. Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/FePO4 structures[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1157-1164. doi: 10.1016/S1003-6326(13)62578-9
[16] SONG Y F, ZHAO Z W. Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques[J]. Separation & Purification Technology, 2018: 206: 335-342. http://www.sciencedirect.com/science/article/pii/S1383586618309316
[17] ZHAO Z W, SI X F, LIU X H, et al. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J]. Hydrometallurgy, 2013, 133: 75-83. doi: 10.1016/j.hydromet.2012.11.013
[18] 徐文华, 刘冬福, 何利华, 等. 电化学脱嵌法盐湖提锂电极反应动力学研究[J]. 化工学报, 2021, 72(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202106016.htm
[19] LIU D F, XU W H, XIONG J C, et al. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics[J]. Separation and Purification Technology, 2021, 270.
[20] LIU R, CHEN L, YAO S, et al. Pore-scale study of capacitive charging and desalination process in porous electrodes and effects of porous structures[J]. Journal of Molecular Liquids, 2021, 332. http://www.sciencedirect.com/science/article/pii/S0167732221005894
-