N263萃取分离锌铁及其热力学研究

丁家杰, 谈定生, 王俊杰, 陈哲, 李启文, 杨健, 丁伟中. N263萃取分离锌铁及其热力学研究[J]. 矿产保护与利用, 2021, 41(4): 70-77. doi: 10.13779/j.cnki.issn1001-0076.2021.04.009
引用本文: 丁家杰, 谈定生, 王俊杰, 陈哲, 李启文, 杨健, 丁伟中. N263萃取分离锌铁及其热力学研究[J]. 矿产保护与利用, 2021, 41(4): 70-77. doi: 10.13779/j.cnki.issn1001-0076.2021.04.009
DING Jiajie, TAN Dingsheng, WANG Junjie, CHEN Zhe, LI Qiwen, YANG Jian, DING Weizhong. Extraction Separation of Zinc and Iron with N263 and Its Thermodynamics[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 70-77. doi: 10.13779/j.cnki.issn1001-0076.2021.04.009
Citation: DING Jiajie, TAN Dingsheng, WANG Junjie, CHEN Zhe, LI Qiwen, YANG Jian, DING Weizhong. Extraction Separation of Zinc and Iron with N263 and Its Thermodynamics[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 70-77. doi: 10.13779/j.cnki.issn1001-0076.2021.04.009

N263萃取分离锌铁及其热力学研究

详细信息
    作者简介: 丁家杰(1995-), 男, 陕西省安康市人, 硕士研究生, 主要研究方向为湿法冶金
    通讯作者: 谈定生(1963-), 男, 博士, 副教授, 主要研究方向为湿法冶金。E-mail: tds1963@163.com
  • 中图分类号: TF803.2+3

Extraction Separation of Zinc and Iron with N263 and Its Thermodynamics

More Information
  • 研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。

  • 加载中
  • 图 1  振荡时间对锌铁萃取率的影响

    Figure 1. 

    图 2  萃取剂浓度对锌铁萃取率的影响

    Figure 2. 

    图 3  N263浓度对锌铁分离系数的影响

    Figure 3. 

    图 4  相比对锌铁萃取率的影响

    Figure 4. 

    图 5  相比(O/A)对锌铁分离系数的影响

    Figure 5. 

    图 6  HCl浓度对锌铁萃取率的影响

    Figure 6. 

    图 7  金属离子的萃取平衡等温线

    Figure 7. 

    图 8  温度对锌铁萃取率的影响

    Figure 8. 

    图 9  lgDT-1的关系

    Figure 9. 

    表 1  不同浓度正己醇对锌铁萃取率的影响

    Table 1.  Effect of n-Hexanol concentration on extraction of zinc and iron

    正己醇浓度/% 试验现象 萃取率/%
    Zn2+ Fe2+ Fe3+
    5 三相 -
    10 -
    15 92.54 0.64 93.77
    20 两相清澈透亮 90.57 0.73 76.69
    25 84.45 0.79 72.07
    30 81.02 0.70 67.64
    下载: 导出CSV

    表 2  反萃剂的反萃效果

    Table 2.  Stripping effect of different reagents

    反萃剂 试验现象/反萃率
    Zn2+/% Fe3+/%
    H2O 35.06 90.54
    0.1 MNH3·H2O 两相均浑浊且水相
    0.1 MNaOH 呈红褐色
    0.5 MH2C2O4 分相困难,久置后水相底部有白色沉淀
    0.1 MHCl 31.97 90.36
    0.1 MH2SO4 35.90 96.28
    0.5 MH2SO4 41.86 97.64
    1 MH2SO4 28.06 88.85
    下载: 导出CSV

    表 3  萃取时的lgDT-1之间的拟合直线方程

    Table 3.  The equation of fitting line between lgD and T-1

    元素 方程式 R2
    Zn2+ y1=0.123 46x1+0.954 5 0.979 08
    Fe3+ y3=-1.688 99x3+5.692 61 0.992 96
    下载: 导出CSV

    表 4  N263萃取锌铁的热力学数值

    Table 4.  Thermodynamic functions of N263 extraction of zinc and iron

    元素 lgKex ΔH0/(kJ·mol-1) ΔG0/(kJ·mol-1) ΔS0/(J·mol-1·K-1)
    Zn2+ 2.12 -2.36 -12.10 32.67
    Fe3+ 0.77 32.34 -4.42 123.29
    下载: 导出CSV
  • [1]

    张国华, 朱北平, 陈先友, 等. 湿法炼锌中锌铁分离方法与运用探讨[J]. 有色金属(冶炼部分), 2021(2): 20-26. doi: 10.3969/j.issn.1007-7545.2021.02.003

    [2]

    YANH, CHAIL Y, PENGB, et al. A novel method to recover zinc and iron from zinc leaching residue[J]. Minerals Engineering, 2014, 55: 103-110. doi: 10.1016/j.mineng.2013.09.015

    [3]

    DUTRA AJB, PAIVA PRP, TAVARES LM. Alkaline leaching of zinc from electric arc furnace steel duste[J]. Minerals Engineering, 2006, 19: 478-485. doi: 10.1016/j.mineng.2005.08.013

    [4]

    付筱芸, 王碧侠, 刘欢, 等. 钢铁厂含锌粉尘处理技术和锌的回收[J]. 热加工工艺, 2019, 48(2): 10-13. http://qikan.cqvip.com/Qikan/Article/Detail?id=83747189504849574850484852

    [5]

    吴勇基, 李敏, 李楚喜, 等. 含锌含铁废酸处理方法的研究[J]. 广东化工, 2016, 43(7): 144-145. doi: 10.3969/j.issn.1007-1865.2016.07.071

    [6]

    SINHA M K, PRAMANIK, SAHU S K, et al. Development of an efficient process for the recovery of zinc and iron asvalue added products from the waste chloride solution[J]. Separation and Purification Technology, 2016, 167: 37-44. doi: 10.1016/j.seppur.2016.04.049

    [7]

    FORMANEKJ, JANDOVAJ, CAPEK J. Iron removal from zinc liquors originating from hydrometallurgicalprocessing of spent Zn/MnO2 batteries[J]. Hydrometallurgy, 2013, 138: 100-105. doi: 10.1016/j.hydromet.2013.06.010

    [8]

    MIESIAC I. Removal of zinc(Ⅱ) and iron(Ⅱ) from spent hydrochloric acid by means of anionic resins[J]. Industrial & Engineering Chemistry Researach, 2005, 44(4): 1004-1011. https://pubs.acs.org/doi/10.1021/ie0493762

    [9]

    MACHADO R M, GAMEIRO M L F, KRUPA M, et al. Selective separation and recovery of zinc and lead from galvanizing industrial effluents by anion exchange[J]. Separation Science and Technology, 2015, 50(17): 2726-2736. http://www.onacademic.com/detail/journal_1000038691685410_89a5.html

    [10]

    SINHA M K, SAHU S K, MESHRAM P, et al. Solvent extraction and separation of zinc and iron from spent pickle liquor[J]. Hydrometallurgy, 2014, 147: 103-111. http://www.onacademic.com/detail/journal_1000036318324910_976a.html

    [11]

    RANDAZZO S, CARUSO V, CIAVARDELLI D, et al. Recovery of zinc from spent pickling solutions by liquid- liquid extraction usingTBP[J]. Desalination and Water Treatment, 2019, 157: 110-117. doi: 10.5004/dwt.2019.24111

    [12]

    MANSUR M B, FERREIRA ROCHA S D, et al. Selective extraction of zinc(Ⅱ) over iron(Ⅱ) from spent hydrochloric acid pickling effluents by liquid-liquid extraction[J]. Journal of Hazardous Materials, 2008, 150(3): 669-678. doi: 10.1016/j.jhazmat.2007.05.019

    [13]

    LONG H Z, CHAI L Y, QIN W Q, et al. Solvent extraction of zinc from zinc sulfate solution[J]. Journalof Central South University of Technology, 2010, 17(4): 760-764. doi: 10.1007/s11771-010-0553-x

    [14]

    MARSZALKOWSKA B, REGEL-ROSOCKA M, NOWAK L, et al. Quaternary phosphonium salts as effective extractants of zinc(Ⅱ) and iron(Ⅲ) ions from acidic pickling solutions[J]. Polish Journal of Chemical Technology, 2010, 12(4): 1-5. doi: 10.2478/v10026-010-0039-5

    [15]

    李强, 肖连生, 张贵清, 等. 季铵盐N263萃取分离钨酸钠中的钒[J]. 稀有金属与硬质合金, 2017, 45(2): 20-27. http://www.cqvip.com/QK/91285X/201702/672192155.html

    [16]

    陈金清, 林凯, 熊家任, 等. 改性季铵盐从高碱度溶液中萃取钒的研究[J]. 有色金属科学与工程, 2015, 6(2): 21-26. https://wenku.baidu.com/view/798f43b92dc58bd63186bceb19e8b8f67d1cef32?fr=xueshu

    [17]

    卢博, 谢方浩, 邓声华, 等. N263-仲辛醇-煤油体系萃取分离钨钼[J]. 硬质合金, 2011, 28(5): 311-315. doi: 10.3969/j.issn.1003-7292.2011.05.008

    [18]

    叶素妹. 镀锌废酸中铁、锌含量的测定方法[J]. 化学分析计量, 2009, 18(1): 52-55. https://d.wanfangdata.com.cn/periodical/hxfxjl200901016

    [19]

    汪家鼎, 陈家镛. 溶剂萃取手册[M]. 北京: 化学工业出版社, 2001: 26-27.

    [20]

    CIERPISZEWSKI R, MIESIAC I, REGEL-ROSOCKA M, et al. Removal of zinc(Ⅱ) from spent hydrochloric acid solutions from zinc hot galvanizing plants[J]. Industrial & engineering chemistry research, 2002, 41(3): 598-603. http://www.onacademic.com/detail/journal_1000036686467510_376e.html

    [21]

    张启修, 张贵清, 唐瑞仁, 等. 萃取冶金原理与实践[M]. 湖南: 中南大学出版社, 2014: 537-539.

    [22]

    LEE MS. Use of the Bromley equation for the analysis of ionic equilibria in mixed ferric and ferrous chloride solutions at 25℃[J]. Metallurgical and materials transactions B-process metallurgy and materials processing science, 2006, 37(2): 173-179. doi: 10.1007/BF02693146

    [23]

    丁扬力, 肖连生, 曹佐英, 等. N263从钼酸钠溶液中萃取分离钼钒[J]. 有色金属科学与工程, 2017, 8(1): 15-20. https://wenku.baidu.com/view/e1d1ab13b94ae45c3b3567ec102de2bd9705de13?fr=xueshu

    [24]

    朱屯. 萃取与离子交换[M]. 北京: 冶金工业出版社, 2005: 67-69.

    [25]

    李洪桂. 湿法冶金学[M]. 湖南: 中南大学出版社, 2002: 345-347.

    [26]

    杨佼庸, 刘大星. 萃取[M]. 北京: 冶金工业出版社, 1988: 37-38.

    [27]

    REGEL-ROSOCKA M, WISNIEWSKI M. Selective removal of zinc(Ⅱ) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101[J]. Hydrometallurgy, 2011, 110(1-4): 85-90. doi: 10.1016/j.hydromet.2011.08.012

    [28]

    徐光宪. 萃取化学原理[M]. 上海: 上海科学技术出版社, 1984: 25-26.

  • 加载中

(9)

(4)

计量
  • 文章访问数:  2906
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2021-08-06
刊出日期:  2021-08-25

目录