-
摘要:
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。
Abstract:The extraction of zinc and iron with N263 from chloride solution was studied. The effects of oscillation time, extractant concentration, modifier concentration, phase ratio(O/A), and hydrochloric acid concentration on the extraction rate of zinc and iron were investigated. The results showedthe extraction rate of Zn2+, Fe2+ and Fe3+ were 90.97%, 0.79% and 75.85%, respectively, and the separation coefficient of βZn2+/Fe2+and βZn2+/Fe3+ were 1 260 and 3.21, respectively, under the conditions of extractant composition of 20% N263+20% n-hexanol+60% 260# solvent oil, phase ratio(O/A) of 1 GA6FA 1, oscillation time of 5 min, 25 ℃. Meanwhile, the concentration of zinc in the aqueous phasedecreased from 9.61 g/L to 0.36 g/L by two-stage countercurrent extraction. The stripping rate of Zn2+ was 41.86% and more than 97% of Fe3+ was stripped with 0.5 mol/L sulfuric acid. Additionally, the mechanism of extraction of metal ions by N263 is anion exchange reaction. The extraction equilibrium isotherms of zinc and iron were plotted, and the thermodynamic functions of the extraction reaction were calculated. The results indicated that the extraction of Zn2+ by N263 is exothermic, and the extraction of Fe3+ is endothermic. The extraction of Zn2+ and Fe3+ can proceed spontaneously at room temperature.
-
Key words:
- N263 /
- solvent extraction /
- zinc /
- iron /
- separation
-
-
表 1 不同浓度正己醇对锌铁萃取率的影响
Table 1. Effect of n-Hexanol concentration on extraction of zinc and iron
正己醇浓度/% 试验现象 萃取率/% Zn2+ Fe2+ Fe3+ 5 三相 - 10 - 15 92.54 0.64 93.77 20 两相清澈透亮 90.57 0.73 76.69 25 84.45 0.79 72.07 30 81.02 0.70 67.64 表 2 反萃剂的反萃效果
Table 2. Stripping effect of different reagents
反萃剂 试验现象/反萃率 Zn2+/% Fe3+/% H2O 35.06 90.54 0.1 MNH3·H2O 两相均浑浊且水相 0.1 MNaOH 呈红褐色 0.5 MH2C2O4 分相困难,久置后水相底部有白色沉淀 0.1 MHCl 31.97 90.36 0.1 MH2SO4 35.90 96.28 0.5 MH2SO4 41.86 97.64 1 MH2SO4 28.06 88.85 表 3 萃取时的lgD和T-1之间的拟合直线方程
Table 3. The equation of fitting line between lgD and T-1
元素 方程式 R2 Zn2+ y1=0.123 46x1+0.954 5 0.979 08 Fe3+ y3=-1.688 99x3+5.692 61 0.992 96 表 4 N263萃取锌铁的热力学数值
Table 4. Thermodynamic functions of N263 extraction of zinc and iron
元素 lgKex ΔH0/(kJ·mol-1) ΔG0/(kJ·mol-1) ΔS0/(J·mol-1·K-1) Zn2+ 2.12 -2.36 -12.10 32.67 Fe3+ 0.77 32.34 -4.42 123.29 -
[1] 张国华, 朱北平, 陈先友, 等. 湿法炼锌中锌铁分离方法与运用探讨[J]. 有色金属(冶炼部分), 2021(2): 20-26. doi: 10.3969/j.issn.1007-7545.2021.02.003
[2] YANH, CHAIL Y, PENGB, et al. A novel method to recover zinc and iron from zinc leaching residue[J]. Minerals Engineering, 2014, 55: 103-110. doi: 10.1016/j.mineng.2013.09.015
[3] DUTRA AJB, PAIVA PRP, TAVARES LM. Alkaline leaching of zinc from electric arc furnace steel duste[J]. Minerals Engineering, 2006, 19: 478-485. doi: 10.1016/j.mineng.2005.08.013
[4] 付筱芸, 王碧侠, 刘欢, 等. 钢铁厂含锌粉尘处理技术和锌的回收[J]. 热加工工艺, 2019, 48(2): 10-13. http://qikan.cqvip.com/Qikan/Article/Detail?id=83747189504849574850484852
[5] 吴勇基, 李敏, 李楚喜, 等. 含锌含铁废酸处理方法的研究[J]. 广东化工, 2016, 43(7): 144-145. doi: 10.3969/j.issn.1007-1865.2016.07.071
[6] SINHA M K, PRAMANIK, SAHU S K, et al. Development of an efficient process for the recovery of zinc and iron asvalue added products from the waste chloride solution[J]. Separation and Purification Technology, 2016, 167: 37-44. doi: 10.1016/j.seppur.2016.04.049
[7] FORMANEKJ, JANDOVAJ, CAPEK J. Iron removal from zinc liquors originating from hydrometallurgicalprocessing of spent Zn/MnO2 batteries[J]. Hydrometallurgy, 2013, 138: 100-105. doi: 10.1016/j.hydromet.2013.06.010
[8] MIESIAC I. Removal of zinc(Ⅱ) and iron(Ⅱ) from spent hydrochloric acid by means of anionic resins[J]. Industrial & Engineering Chemistry Researach, 2005, 44(4): 1004-1011. https://pubs.acs.org/doi/10.1021/ie0493762
[9] MACHADO R M, GAMEIRO M L F, KRUPA M, et al. Selective separation and recovery of zinc and lead from galvanizing industrial effluents by anion exchange[J]. Separation Science and Technology, 2015, 50(17): 2726-2736. http://www.onacademic.com/detail/journal_1000038691685410_89a5.html
[10] SINHA M K, SAHU S K, MESHRAM P, et al. Solvent extraction and separation of zinc and iron from spent pickle liquor[J]. Hydrometallurgy, 2014, 147: 103-111. http://www.onacademic.com/detail/journal_1000036318324910_976a.html
[11] RANDAZZO S, CARUSO V, CIAVARDELLI D, et al. Recovery of zinc from spent pickling solutions by liquid- liquid extraction usingTBP[J]. Desalination and Water Treatment, 2019, 157: 110-117. doi: 10.5004/dwt.2019.24111
[12] MANSUR M B, FERREIRA ROCHA S D, et al. Selective extraction of zinc(Ⅱ) over iron(Ⅱ) from spent hydrochloric acid pickling effluents by liquid-liquid extraction[J]. Journal of Hazardous Materials, 2008, 150(3): 669-678. doi: 10.1016/j.jhazmat.2007.05.019
[13] LONG H Z, CHAI L Y, QIN W Q, et al. Solvent extraction of zinc from zinc sulfate solution[J]. Journalof Central South University of Technology, 2010, 17(4): 760-764. doi: 10.1007/s11771-010-0553-x
[14] MARSZALKOWSKA B, REGEL-ROSOCKA M, NOWAK L, et al. Quaternary phosphonium salts as effective extractants of zinc(Ⅱ) and iron(Ⅲ) ions from acidic pickling solutions[J]. Polish Journal of Chemical Technology, 2010, 12(4): 1-5. doi: 10.2478/v10026-010-0039-5
[15] 李强, 肖连生, 张贵清, 等. 季铵盐N263萃取分离钨酸钠中的钒[J]. 稀有金属与硬质合金, 2017, 45(2): 20-27. http://www.cqvip.com/QK/91285X/201702/672192155.html
[16] 陈金清, 林凯, 熊家任, 等. 改性季铵盐从高碱度溶液中萃取钒的研究[J]. 有色金属科学与工程, 2015, 6(2): 21-26. https://wenku.baidu.com/view/798f43b92dc58bd63186bceb19e8b8f67d1cef32?fr=xueshu
[17] 卢博, 谢方浩, 邓声华, 等. N263-仲辛醇-煤油体系萃取分离钨钼[J]. 硬质合金, 2011, 28(5): 311-315. doi: 10.3969/j.issn.1003-7292.2011.05.008
[18] 叶素妹. 镀锌废酸中铁、锌含量的测定方法[J]. 化学分析计量, 2009, 18(1): 52-55. https://d.wanfangdata.com.cn/periodical/hxfxjl200901016
[19] 汪家鼎, 陈家镛. 溶剂萃取手册[M]. 北京: 化学工业出版社, 2001: 26-27.
[20] CIERPISZEWSKI R, MIESIAC I, REGEL-ROSOCKA M, et al. Removal of zinc(Ⅱ) from spent hydrochloric acid solutions from zinc hot galvanizing plants[J]. Industrial & engineering chemistry research, 2002, 41(3): 598-603. http://www.onacademic.com/detail/journal_1000036686467510_376e.html
[21] 张启修, 张贵清, 唐瑞仁, 等. 萃取冶金原理与实践[M]. 湖南: 中南大学出版社, 2014: 537-539.
[22] LEE MS. Use of the Bromley equation for the analysis of ionic equilibria in mixed ferric and ferrous chloride solutions at 25℃[J]. Metallurgical and materials transactions B-process metallurgy and materials processing science, 2006, 37(2): 173-179. doi: 10.1007/BF02693146
[23] 丁扬力, 肖连生, 曹佐英, 等. N263从钼酸钠溶液中萃取分离钼钒[J]. 有色金属科学与工程, 2017, 8(1): 15-20. https://wenku.baidu.com/view/e1d1ab13b94ae45c3b3567ec102de2bd9705de13?fr=xueshu
[24] 朱屯. 萃取与离子交换[M]. 北京: 冶金工业出版社, 2005: 67-69.
[25] 李洪桂. 湿法冶金学[M]. 湖南: 中南大学出版社, 2002: 345-347.
[26] 杨佼庸, 刘大星. 萃取[M]. 北京: 冶金工业出版社, 1988: 37-38.
[27] REGEL-ROSOCKA M, WISNIEWSKI M. Selective removal of zinc(Ⅱ) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101[J]. Hydrometallurgy, 2011, 110(1-4): 85-90. doi: 10.1016/j.hydromet.2011.08.012
[28] 徐光宪. 萃取化学原理[M]. 上海: 上海科学技术出版社, 1984: 25-26.
-