Experimental Study on Beneficiation of a High Zinc Refractory Copper-Zinc Sulfide Ore from Dongchuan County of Yunnan Province
-
摘要:
云南东川某铜锌硫化矿石Cu品位为0.64%、Zn品位为6.21%,主要脉石矿物有石英、绢云母、方解石等,且矿石中的矿物多数都构成连生体,给铜锌分离造成困难。对该矿石采用抑锌浮铜的优先浮选工艺流程。在磨矿细度为-0.074 mm占80%条件下,用石灰调节pH,铜粗选用硫酸锌和焦亚硫酸钠组合抑制闪锌矿,Z-200为捕收剂;锌粗选以硫酸铜为活化剂,异丁基黄药为捕收剂;铜和锌均采用“一次粗选一次扫选两次精选”的工艺流程,其中,铜粗精矿需再磨至细度为-0.038 mm占90%,铜第一次精选尾矿需进行扫选。最终,经闭路流程试验获得Cu品位27.87%、Cu回收率75.17%的铜精矿和Zn品位49.23%、Zn回收率94.48%的锌精矿,铜精矿含锌5.41%,锌精矿含铜1.03%,铜锌互含较低,实现了铜锌分离。
Abstract:In a copper-zinc sulfide ore in Dongchuan, Yunnan Province, the Cu grade is 0.64% and the Zn grade is 6.21%. The main gangue minerals include quartz, sericite and calcite.Most of the minerals in the ore are composed of intergrowth.The low degree of monomer dissociation is unfavorable, causing difficulty in the separation copper and zinc. The selective flotation process of zinc suppression and copper flotation is adopted for the ore. Under the condition that the grinding fineness is -0.074 mm, accounting for 80%, adjust the pH with lime, select the combination of zinc sulfate and sodium pyrosulfite to inhibit sphalerite for copper roughing, Z-200 as the collector, copper sulfate as the activator for zinc roughing, isobutyl xanthate as the collector, and adopt the process of "one roughing, one scavenging and two cleaning" for copper and zinc. Among them, the copper roughing concentrate needs to be regrinded to a fineness of -0.038 mm, accounting for 90%.The tailings of the first copper cleaning shall be scavenging. Finally, through the closed-circuit process tests, the copper concentrate with Cu grade of 27.87% and Cu recovery of 75.17% and the zinc concentrate with Zn grade of 49.23% and Zn recovery of 94.48% were obtained. The copper concentrate contains 5.41% zinc, the zinc concentrate contains 1.03% copper, and the mutual content of copper and zinc in the concentrate was low, and the separation of copper and zinc was realized.
-
Key words:
- sulfide ore /
- copper/zinc separation /
- zinc suppression and floating copper /
- regrinding /
- flotation
-
-
表 1 原矿化学多元素分析结果
Table 1. Results of chemical multielement analysis of raw ore
成分 SiO2 Cu Zn Pb Fe 含量/% 49.14 0.64 6.21 0.0051 8.05 成分 MgO S Au* Ag* As 含量/% 1.91 5.90 0.0001 13.6 0.01 注:Au和Ag含量单位为g/t。 表 2 铜物相分析结果
Table 2. Results of copper phase analysis
元素物相 游离氧化铜 结合氧化铜 次生硫化铜 原生硫化铜 总铜 含量/% 0.0058 0.0058 0.029 0.64 0.68 分布率/% 0.85 0.85 4.26 94.04 100.00 表 3 锌物相分析结果
Table 3. Results of zinc phase analysis
元素物相 硫酸锌 氧化锌 硫化锌 锌铁尖晶石及其他 总锌 含量/% 0.079 0.13 6.16 0.10 6.47 分布率/% 1.22 2.02 95.21 1.55 100.00 表 4 正交试验条件
Table 4. Arrangement of orthogonal test conditions
编号 A B C ZnSO4/(g·t-1) Na2S2O5/(g·t-1) Z-200/(g·t-1) 1 1000 500 50 2 1000 1000 70 3 1000 1500 60 4 1500 500 70 5 1500 1000 60 6 1500 1500 50 7 2000 500 60 8 2000 1000 50 9 2000 1500 70 表 5 铜粗选抑制剂与捕收剂用量正交试验结果
Table 5. Results of orthogonal tests on the dosage of inhibitor and collector in copper flotation roughing
/% 编号 产率 原矿品位 铜粗精矿品位 尾矿品位 铜粗精矿回收率 浮选效率 铜粗精矿 尾矿 Cu Zn Cu Zn Cu Zn Cu Zn Cu Zn 1 7.83 92.17 0.65 6.22 6.24 13.22 0.18 5.62 74.65 16.66 68.15 9.72 2 8.86 91.14 0.64 6.25 6.11 14.37 0.11 5.46 84.37 20.37 76.95 12.69 3 8.10 91.90 0.66 6.24 6.55 12.67 0.14 5.67 80.48 16.45 73.77 9.21 4 8.83 91.17 0.63 6.21 6.25 14.58 0.09 5.40 87.06 20.73 75.66 13.12 5 8.22 91.78 0.65 6.19 7.05 12.34 0.08 5.64 88.75 16.35 82.10 8.98 6 7.88 92.12 0.64 6.22 7.27 11.35 0.07 5.78 89.88 14.38 83.50 7.16 7 9.31 91.69 0.66 6.20 6.89 12.56 0.09 5.62 87.40 16.78 80.56 9.36 8 7.68 92.32 0.63 6.21 7.49 10.35 0.06 5.87 91.22 12.79 85.09 5.64 9 8.33 91.67 0.64 6.23 6.97 10.47 0.07 5.84 90.43 14.01 83.67 6.26 表 6 全流程闭路试验结果
Table 6. Results of the whole process closed circuit tests
产品 产率/% 品位/% 回收率/% Cu Zn Cu Zn 铜精矿 1.76 27.87 5.41 75.17 1.53 锌精矿 11.96 1.03 49.23 18.88 94.48 尾矿 86.28 0.04 0.28 5.95 3.99 原矿 100.00 0.64 6.22 100.00 100.00 -
[1] 易晓剑. 国内外主要有色金属资源储量及其特点[J]. 世界有色金属, 2005, 4(12): 42-43.
[2] 焦芬. 复杂铜锌硫化矿浮选分离的基础研究[D]. 长沙: 中南大学, 2013.
[3] 李俊旺, 张红华, 洪建华. 铜锌硫化矿浮选分离研究进展[J]. 铜业工程, 2016, 4(4): 56-58.
[4] 张渊, 刘韬, 张俊辉. 天宝山铜铅锌多金属矿矿石性质及选矿工艺研究[J]. 金属矿山, 2008(5): 70-72.
[5] DENG JIUSHUAI, MAO YINGBO, WEN SHUMING, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals[J]. International Journal of Minerals Metallurgy and Materials, 2015(2): 111-115.
[6] CHANDRA AP, GERSON AR. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite[J]. Advances in Colloid & Interface Science, 2009(1/2): 97-100. http://www.onacademic.com/detail/journal_1000034013576310_0230.html
[7] LIU J, WEN S, DENG J, et al. Contribution of fluid inclusions to variations in solution composition for sphalerite quartz samples from the Yunnan Province, PRC[J]. Colloids & Surfaces A : Physico chemical& Engineering Aspects, 2013(35): 287-293. http://www.onacademic.com/detail/journal_1000036111293210_aa88.html
[8] 余新阳, 王强强, 刘诚, 等. 河南某高硫难选铜锌矿选矿试验研究[J]. 有色金属工程, 2016, 6(4): 53-57.
[9] 张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1): 1-5.
[10] 许时, 刘金华, 孟书青, 等. 矿石可选性研究[M]. 北京: 冶金工业出版社, 1981.
[11] 李宁. 铜锌硫化矿浮选分离研究[C]. 长沙: 中南大学, 2012.
[12] 尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018(4): 16-21.
[13] 王衡嵩, 魏志聪, 曾明, 等. 铜锌矿物分离中闪锌矿抑制剂的作用机理研究进展[J]. 矿产保护与利用, 2019, 39(2): 124-130. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=13891fe2-2e09-412b-a0a4-1050c898977c
[14] GERSON A R, LANGE A G, PRINCE K E, et al. The mechanism of copper activation of sphalerite[J]. Appl. Surf. Sci., 1999, 137(1/4): 207-223.
[15] PRESTIDGE C A, THIEL A G, RALSTON J, et al. The interaction of ethyl xanthate with copper(Ⅱ)-activated zinc sulphide: kinetic effects[J]. Colloids Surf., A, 1994, 85(1): 51-68. http://www.sciencedirect.com/science/article/pii/092777579402748X
[16] 李佳磊, 宋凯伟, 刘殿文, 等. 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018(1): 11-19.
-