-
摘要:
以拜耳法赤泥为主要原料,添加铝矾土熟料、锂瓷石在低温条件下制备长石-刚玉质复相陶瓷。利用X射线衍射仪(XRD)、扫描电镜(SEM)对陶瓷的物相组成和形貌进行分析。研究了赤泥的含量、烧结温度等对陶瓷的体积密度、收缩率、吸水率、孔隙率、抗压强度的影响。研究结果表明:当赤泥在原料中的质量分数为60%、烧结温度为1 050 ℃时,制得复相陶瓷的性能最优,其物相组成为钙长石、刚玉、赤铁矿、石英、玻璃相以及少量的莫来石相,体积密度为1.85 g/cm3,收缩率为7.34%,吸水率为19.87%,抗压强度为79.48 MPa,其有害组分的溶出试验进一步表明钠、钾、钙等有害元素均稳定固化在产物中,产品在墙体装饰、陶瓷和耐火材料等领域具有广泛的应用前景。
Abstract:Using bayer red mud as the main raw material, adding vanadium clay clinker and lithium porcelain stone, feldspar-corundum ceramics were prepared at low temperature. The phase composition and morphology of ceramics were analyzed by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The effects of the amount of red mud and sintering temperature on the volume density, shrinkage, water absorption, porosity and compressive strength of ceramics were studied. The results show that: When the amount of red mud is 60% and the sintering temperature is 1 050 ℃, the properties of the multiphase ceramics are the best, and the phase composition is anhydrite, corundum, hematite, quartz, glass phase and a small amount of mullite phase. The volume density is 1.85 g/cm3, the shrinkage rate is 7.34%, the water absorption rate is 19.87%, and the compressive strength is 79.48 mpa. The dissolution experiment of harmful components further showed that sodium, potassium, calcium and other harmful elements were stabilized in the product, which has a wide application prospect in the field of wall decoration and refractory materials.
-
Key words:
- red mud /
- ceramic /
- low temperature /
- solidification of harmful elements
-
-
表 1 赤泥的主要化学成分
Table 1. Main chemical composition of red mud
/% Chemical composition Fe2O3 Al2O3 SiO2 Na2O CaO TiO2 SO3 percentage 33.42 20.02 19.24 10.46 8.86 4.17 1.27 表 2 锂瓷石的主要化学成分
Table 2. Main chemical composition of lithium porcelain stone
/% Chemical composition SiO2 Al2O3 K2O CaO Na2O F P2O5 percentage 65.47 20.36 3.71 3.14 2.39 2.03 1.74 表 3 铝矾土熟料的主要化学成分
Table 3. Main chemical composition of bauxite clinker
/% Chemical composition Al2O3 SiO2 TiO2 Fe2O3 K2O CaO MgO P2O5 percentage 64.50 28.70 3.04 1.67 0.86 0.47 0.24 0.15 表 4 赤泥含量60%、1 050 ℃烧结的长石-刚玉质复相陶瓷试样ICP测试结果
Table 4. ICP test results of feldspar-jade multiphase ceramics sintered at 1 050 ℃ with 60% red mud content
soak time /d element content /(mg·L-1) 1 Fe <0.01 1 Ca <0.01 1 Ti <0.01 1 Na 2.68 7 Ca 8.07 7 K 3.28 7 Na 12.4 -
[1] LI S, KANG Z, LIU W, et al. Reduction behavior and direct reduction kinetics of red mud-biomass composite pellets[J]. Journal of Sustainable Metallurgy, 2021, 7(1): 126-135. doi: 10.1007/s40831-020-00326-y
[2] ZHANG X, ZHOU K, LEI Q, et al. Selective removal of iron from acid leachate of red mud by aliquat 336[J]. Jom, 2019, 71(12): 4608-4615. doi: 10.1007/s11837-019-03801-4
[3] LIU Y, QIN Z, CHEN B. Experimental research on magnesium phosphate cements modified by red mud[J]. Construction and Building Materials, 2020, 231: 117131. doi: 10.1016/j.conbuildmat.2019.117131
[4] ZHAO H, GOU H. Unfired bricks prepared with red mud and calcium sulfoaluminate cement: Properties and environmental impact[J]. Journal of Building Engineering, 2021, 38: 102238. doi: 10.1016/j.jobe.2021.102238
[5] LIU X, HAN Y, HE F, et al. Characteristic, hazard and iron recovery technology of red mud - A critical review[J]. J Hazard Mater., 2021, 420: 126542. doi: 10.1016/j.jhazmat.2021.126542
[6] MONNIN C, BOUSSOUGOU A L K, OLIVA P, et al. Characterization of the submarine disposal of a Bayer effluent (Gardanne alumina plant, southern France): Ⅱ. Chemical composition of the clarified effluent and mineralogical composition of the concretions formed by its discharge in the Mediterranean Sea[J]. Environmental Advances, 2021, 5: 100087. doi: 10.1016/j.envadv.2021.100087
[7] ARCHAMBO M S, KAWATRA S K. Utilization of bauxite residue: recovering Iron values using the iron nugget process[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42(4): 222-230.
[8] ARROYO F, LUNA-GALIANO Y, LEIVA C, et al. Environmental risks and mechanical evaluation of recycling red mud in bricks[J]. Environ Res., 2020, 186: 109537. doi: 10.1016/j.envres.2020.109537
[9] AGRAWAL S, DHAWAN N. Evaluation of red mud as a polymetallic source-A review[J]. Minerals Engineering, 2021, 171: 107084. doi: 10.1016/j.mineng.2021.107084
[10] 廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019, 39(3): 21-27. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=228b5218-080b-4823-b701-1dec0629275e
[11] 曾华, 吕斐, 胡广艳, 等. 拜耳法赤泥脱碱新工艺及其土壤化研究[J]. 矿产保护与利用, 2019, 39(3): 1-7. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d3743b25-33ca-47c2-ac57-e4a957c51cf0
[12] RAI S, BAHADURE S, CHADDHA MJ, et al. Disposal practices and utilization of red mud (Bauxite Residue)a review in indian context and abroad[J]. Journal of Sustainable Metallurgy, 2020, 6(4): 1-8.
[13] AGRAWAL S, RAYAPUDI V, DHAWAN N. Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values[J]. Minerals Engineering, 2019, 132: 202-210. doi: 10.1016/j.mineng.2018.12.012
[14] KUMAR A, SARAVANAN T J, BISHT K, et al. A review on the utilization of red mud for the production of geopolymer and alkali activated concrete[J]. Construction and Building Materials, 2021, 302: 124170. doi: 10.1016/j.conbuildmat.2021.124170
[15] COLLIN G, YUN H, VIGNESWAR K, et al. Application of modified red mud in environmentally-benign applications: A review paper[J]. Environmental Engineering Research: Environmental Engineering Research, 2020, 25(6): 795-806.
[16] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. doi: 10.1016/j.resconrec.2018.11.006
[17] GAO F, ZHANG J, DENG X, et al. Comprehensive Recovery of Iron and Aluminum from Ordinary Bayer Red Mud by Reductive Sintering-Magnetic Separation-Digesting Process[J]. Jom, 2019, 71(9): 2936-2943. doi: 10.1007/s11837-018-3311-4
[18] WANG S, JIN H, DENG Y, et al. Comprehensive utilization status of red mud in China: A critical review[J]. Journal of Cleaner Production, 2021, 289: 125136. doi: 10.1016/j.jclepro.2020.125136
[19] LIU Y, LI X, ZHANG W, et al. Effect and mechanisms of red mud catalyst on pyrolysis remediation of heavy hydrocarbons in weathered petroleum-contaminated soil[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106090. doi: 10.1016/j.jece.2021.106090
[20] MUKIZA E, ZHANG L, LIU X, et al. Utilization of red mud in road base and subgrade materials: A review[J]. Resources, Conservation and Recycling, 2019, 141: 187-199. doi: 10.1016/j.resconrec.2018.10.031
[21] SUTAR H, MISHRA S C, SAHOO S K, et al. Progress of red mud utilization: an overview[J]. American Chemical Science Journal, 2014, 4(3): 255-279. doi: 10.9734/ACSJ/2014/7258
[22] PANDA S, COSTA R B, SHAH S S, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud) - A review[J]. Resources, Conservation and Recycling, 2021, 171: 105645. doi: 10.1016/j.resconrec.2021.105645
[23] ZONG Y B, CHEN W H, FAN Y, et al. Complementation in the composition of steel slag and red mud for preparation of novel ceramics[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(9): 1010-1017. doi: 10.1007/s12613-018-1651-2
[24] 柳佳建, 陈伟, 周康根, 等. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2f07004c-acb5-4bac-b639-e2f798b8d4b0
[25] 雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019, 39(3): 15-20. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3b6acf78-e474-4117-8251-9502830cdeef
[26] LOPES D V, DURANA E, CESCONETO F R, et al. Direct processing of cellular ceramics from a single red mud precursor[J]. Ceramics International, 2020, 46(10): 16700-16707. doi: 10.1016/j.ceramint.2020.03.244
[27] 曾超, 何维. 赤泥物相的X射线粉末衍射Rietveld法定量分析研究[J]. 冶金分析, 2014, 34(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201408001.htm
[28] 童思意, 刘长淼, 刘玉林, 等. 我国固体废弃物制备陶粒的研究进展[J]. 矿产保护与利用, 2019, 39(3): 140-150. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=af60f117-a7db-445e-8ba8-5595841f4873
[29] 邢芩瑞, 马远, 李宇. 不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J]. 有色金属科学与工程, 2021, 12(1): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202101007.htm
[30] 张伟国, 马小娥, 魏红姗, 等. 拜耳法赤泥基轻质保温陶瓷的中试生产[J]. 轻金属, 2020(11): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS202011004.htm
[31] 魏红姗, 马小娥, 管学茂, 等. 拜耳法赤泥基轻质保温陶瓷的制备[J]. 硅酸盐通报, 2019, 38(3): 749-751. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201903026.htm
[32] 张辉, 李安林, 曾小州, 等. 以赤泥为助熔剂制备长石质发泡陶瓷[J]. 硅酸盐通报, 2019, 38(12): 4002-4006. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201912045.htm
[33] 王清涛, 李森, 于华芹, 等. 利用赤泥制备轻质高强保温装饰一体化建筑材料[J]. 硅酸盐通报, 2018, 37(4): 1393-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201804045.htm
[34] 王清涛, 李森, 李峰芝, 等. 赤泥掺加量对保温装饰建筑陶瓷性能的影响[J]. 非金属矿, 2017, 40(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201705013.htm
[35] 李勇冲, 刘永杰, 孙杰璟, 等. 利用赤泥制备闭孔超轻质泡沫陶瓷的研究[J]. 新型建筑材料, 2017, 44(11): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201711034.htm
-